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Regression models of censored survival data are often required to handle the cases, where 
information on the dependent (response) variable is only available as intervals, within which 
the actual values are located.  We report on implementation and some preliminary tests 
of a new general method for regression with an interval-censored response variable. This 
method is based on minimization of a convex piecewise-linear (CPL) criterion function 
introduced earlier for perceptron-type classifier design. The presented interval regression 
method (CPL-IR) can handle arbitrary pattern of exact and left-, right-, or interval-censored 
data in one flexible computational framework. 
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1. Introduction

Linear regression modeling with survival time as the dependent variable and some 
other variables as predictors frequently is required to handle censoring of survival 
times. The censored survival times are not known exactly but, instead, are known 
to be left-, right-, or interval-bounded by the time, depending on when the subject 
enters and leaves the study or depending on times between the consecutive exami-
nations.  By far the most common, and the most studied, are mixtures of the exact 
and right-censored survival times, arising if some subjects dropped-out or  survived 
the termination of the study [1]. Classical survival analysis methods were primarily 
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developed for this type of data and there exist mature commercial [2] and public 
domain software [3] for construction of nonparametric estimators of survival func-
tion, semiparametric Cox regression models of the hazard function and parametric 
maximum likelihood methods for regression analysis (we refer to [1] for general 
theoretical background).  
 Another, much less common, but important pattern, is encountered, if the dataset 
contains no exact observations of the survival time but only the left- and right- censored 
observations. This censoring type is called “current status” censoring, because each 
subject is submitted to a single (and often destructive) examination for presence or 
absence of the condition of interest (e.g. appearance of disease symptoms) and is ana-
lyzed mostly with maximum likelihood and nonparametric methods. Such data appear 
difficult for direct application of regression analysis techniques based on minimization 
of prediction error because no exact value of the dependent variable is known.
 Interval censoring is the most general censoring pattern and typically arises in 
longitudinal studies or repetitive patient examinations, when the subject is known to 
survive certain point of time t – and not survive beyond the other time point t+. The 
interval-censored data are recently growing in importance in medical research and there 
is also increased interest in development of corresponding analysis methods [4].
 A novel approach for solving the general interval regression problem was recently 
proposed by Bobrowski [5, 6] . This method formulates linear regression analysis of 
the interval-censored response variable as a geometrical problem of optimal linear 
separation of data points and is capable to handle arbitrary censoring patterns.  
 The purpose of this note is presentation of a version of this method and its dem-
onstration in the context of a real survival dataset. We are interested in the regression 
coefficients and estimates of survival function obtained using the predicted survival 
times. We compare the CPL-IR with some results of parametric survival regression and 
the Cox model. The R system for statistical computing [7] was used for implementation 
of the CPL-IR method and as the resource of survival analysis data and techniques.

2. Interval Regression Based on CPL Error Criterion

The data for the interval regression analysis are given as a data matrix composed of 
M rows of the form

   x j
T

j jy y, ,− +  (1)

where j M Rj
T N= ∈1,... , x , is the N-dimensional vector of predictors and y yj j

− +,  are 
the lower and the upper bound on the unobserved scalar dependent variable yj, which 
satisfy the relations

   y y yj j j
− +≤ ≤ .  (2)
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In the context of the survival analysis we assume that the dependent variable is the 
logarithm of survival time; y = log(t). For data points with given exact values of 
the dependent variable y y yj j j

− += = . In this convention a right-censored response 
corresponds to the improper interval [ , ],y j

− +∞  and the left-censored response to
[ , ],−∞ +y j  where [ , ],−∞ +y j  and y j

− = −∞ , respectively.
Linear predictive model for the dependent variable y R∈  is a scalar product 

   y v v x v xT
N N= = + +[ , ] ,...,1 0 1 1x v  (3)

where [1,xT] ∈ RN+1 is the augmented data vector and v = [v0, v1,...,vN]T ∈ RN+1 is 
the vector of adjustable parameters of the model. Determination of the optimal 
parameters v is achieved by minimization of a piecewise-linear criterion function 
constructed as follows. For an individual data vector xj with corresponding bounds 
y yj j

− +,  and for variable parameters  v = [v0, v1,...,vN] of the model (3) we define two 
nonnegative error functions ϕ j

− ( )v  and ϕ j
+ ( )v  (see Fig. 1) corresponding to the 

lower and upper bound, respectively. Each function is, by definition, equal to zero if 
the model output y j j

T∧ = [ , ]1 x v  at the point j satisfies the corresponding constraint.  
Otherwise, the function ϕ j

+ ( )v  is equal to the excess of model output behind the 
bound y yj j

∧ +−  if the output is too large, or the function ϕ j
− ( )v  is equal to y yj j− ∧  if 

the output is too small :
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Sum of the two functions is a measure of the error of the model at the data point j, 
given the parameter vector v, as shown on Fig. 1.
 The total error function Φ(v) associated with the parameter vector v is the 
weighted sum of individual error functions ϕ j

− ( )v  and ϕ j
+ ( )v  for each of data 

points

   Φ( ) ( ) ( ),v v v= +− −

=

+ +

=
∑ ∑α ϕ α ϕj j
j

M

j j
j

M

1 1

  (6)

where α j
− ≥ 0, α j

+ ≥ 0  are weights, which determine relative influence of the indi-
vidual data points on the regression hyperplane and may be used e.g. to compensate 
for outliers and asymmetry of the survival time distribution. In the current typical 
usage of the method we set α αj j

− += =1. The function  is convex and piecewise lin-
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ear (CPL) and can be effectively minimized with a basis exchange algorithm [8, 9] 
developed earlier for classification with formal neurons. See also [10] for geometrical 
analysis of the interval regression problem in terms of linear separability of datasets 
in the feature space of augmented data vectors x j

T.

Fig. 1. Schematic drawing of the error functions ϕ j
− ( )v and ϕ j

+ ( )v  associated with interval-bounds y yj j
− +, ,

respectively; all horizontal lines have vertical coordinate equal to 0

3. Computational Examples

For getting some idea how the CPL-IR method performs in practice we compare it 
with other two established approaches – the parametric survival regression and the 
Cox proportional hazards model. The parametric maximum likelihood method is 
implemented in function survreg() of the R survival package [3], and fits the 
maximum likelihood accelerated failure time model under selected parametric as-
sumptions of the distribution of the survival times, including the Weibull distribution. 
The classical formulation of the Cox model does allow only for mixture of the exact 
and right-censored survival times [1]. However, the intcox package [11] provides 
the R function intcox(), which is a state-of-the-art implementation of a gener-
alization of the Cox proportional hazards model to data with the interval-censored 
survival times, based on the optimization technique developed in reference [12]. 
 Following the exposition of intcox in [13], we consider two datasets 
provided in this package. The intcox.example dataset has been gener-
ated using the Weibull distribution of the response times with shape parameter 
γ = 0.75 and scale exp(β0 + βTx)–1/y, where β0 = 0.1 determines baseline hazard and
β = [0.5, –0.5, 0.5, 0.5]T are true coefficients of covariates’ effects on the hazard 
function. The response times are interval-censored by the grid of 10 random times. 
There are two binary covariates x.1 and x.2, and two continuous covariates x.3 
(sample from the uniform distribution on [–1, 1]) and x.4 (sample from the standard 
Gaussian distribution). 
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 The coefficients of linear models computed by the interval Cox method, the CPL 
interval regression  and the parametric maximum likelihood method are given in 
Table 1. Note that, because the Cox model refers to the hazard function, the signs of 
the Cox model coefficients are opposite to the two other methods and the intercept 
term, which would refer to the baseline hazard, is not reported for the proportional 
hazard model. The minimum value of the criterion function was Φmin = 118.59.
 The estimate of survival function for the interval censored survival times can be 
computed by function survfit() of the survival package, using the Turnbull 
iterative method for interval censored data ([1], p.129). For this data, another esti-
mate of the survival function can be also obtained using the predicted values of the 
survival times computed with the CPL-IR method. Both survival curves are plotted 
on Fig. 2. The thicker line, corresponding to the estimate based on the predicted 

Table 1. Coefficients of regression model for the survival times in intcox.example dataset, calculated
  by the interval-Cox method (intCox), the CPL-based interval regression (CPL-IR), and the 

parametric maximal likelihood method (SR). The parametric maximum likelihood model was 
calculated using function survreg() under the assumption of Weibull distribution of the 
response times. Intercept parameter is only reported for the accelerated time models (CPL-IR 
and SR) and corresponds to the baseline hazard in the proportional hazards (intCox) model

Method/Variable intCox SR CPL-IR
(intercept) NA –0.227 –0.563
x.1   0.636 –0.712 –0.598
x.2 –0.435   0.740   0.554
x.3   0.330 –0.427 –0.580
x.4   0.425 –0.547 –0.344

Fig. 2. Survival function S(t) for simulated interval-censored data (the intcox.example dataset). The 
thin stair-like curve represents the nonparametric survival estimator with 95% confidence limits (dotted 
lines) determined by the survfit() function of the R survival package; the thicker and smoother 
line represents estimate of  S(t), computed with the survival times predicted by the model CPL-IR
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survival times, indicates that the CPL-IR method tends to overestimate short survival 
times and underestimate long survival times. The crossing of both curves takes place 
approximately around the median survival time corresponding to S(t) = 0.5. This 
may be related to the fact that, for exact data without censoring, the CPL-IR method 
would produce predictions of the median of response variable.
 The other dataset, AA.data, contains left- and right- censored (current status) 
data for N = 149 examinations of aneurisms in 83 patients with cerebral arteriovenous 
malformations (cAVM; a kind of abnormal, balloon-like swellings on weakened 
blood vessels; causing risk of rupture and hemorrage, commonly on basal arteries 
of the brain) after embolisation treatment (attempt to occlude of the swelling with 
purposefully induced blood clots). The variable obs.t is the inspection time for 
the current status examination. The degree of shrinkage of aneurisms following the 
embolism treatment  is measured by a discrete, binary variable mo (equal 0 or 1; for 
shrinkage by less or more than 50%, respectively). This variable serves as a measure 
of success of the treatment. There are two relevant covariates to each observation: 
lok is the information on location of aneurism on midline (=0) or other (=1) arteries 
of the brain; gr is the integer-valued grouping variable (patient number) to which the 
individual observation refers (there may be multiple sites of aneurism per patient). 
The coefficients for this data are presented in Table 2.

Table 2. The coefficient of the CPL interval regression (CPL-IR) compared with the interval Cox method 
(intCox) and the parametric maximum likelihood regression under assumption of the Weibull 
(SR Weibull) and the exponential (SR Exp) survival time distributions for the aneursims dataset 
AA.data

Method /variable intCox SR Weibull SR Exp CPL-IR
(intercept) NA 0.563 0.422 0.068
mo  -1.007 2.229 1.118 0.695
lok  -0.831 1.645 0.903 0.502

 Here, both methods agree as to the direction of influence (positive coefficients 
in the survival-time models mean increase of the survival time, which is compat-
ible with opposite-sign values in the proportional hazards models which quantify 
the influence of predictors on the hazard function), but differ more (by about 30%) 
in the magnitude. The minimum value of the CPL criterion function attained was  
Φmin = 40.6. The magnitude of model coefficients calculated by the parametric sur-
vival regression depends strongly on the assumed distribution of survival times, and 
e.g. the effect of mo variable is almost 2 times larger for the Weibull than for the 
exponential distribution (Table 2).
 The variability of coefficients obtained with the CPL-IR method can be estimated 
via the standard nonparametric bootstrap procedure i.e. by resampling (with replace-
ment) cases from the original data set and repeating calculation of the regression 
coefficients. The result of such assessment for the CPL-IR applied to the intcox.
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example dataset is plotted on Fig. 3, which summarizes the results of regression 
coefficients obtained from 100 bootstrap repetitions. The means of coefficients are 
close to original values in modulus (0.5) and mostly correct as to the sign of influ-
ence of predictor on the survival time. Compared with the results presented on an 
analogous (differing only by centering of the coefficient values) figure provided on 
the last page of reference [13], the variability of regression coefficients we obtained 
for the CPL-IR is, however, larger than the variability of the model calculated by the 
intcox procedure. We also observed for the CPL-IR some difference between the 
original coefficients for the full data set and the means of the bootstrap trials, simi-
lar to the bias reported in [13]. In general the magnitude of coefficients determined 
by the Cox model is not expected to be the same as the coefficients determined by 
the linear regression models with y = log(t) as dependent variable, except for the 
maximum likelihood estimation under assumption of exponential distribution of the 
survival times, if the survival times are in fact exponentially distributed. 

Fig. 3. The variability of coefficients of regression obtained with the CPL-IR method in a bootstrap 
resampling experiment with 100 repetitions on the intcox.example dataset. For each regression 
coefficient, the thick line represents the mean value for all bootstrap samples; the box extends over 
the range between the 1st and 3rd quartiles of the coefficient distribution; whiskers extend to the most 
extreme values, which are no more than 1.5 inter-quartile range distant from the box; isolated points

represent the remaining values

4. Discussion

Estimation of the predictive regression models of the survival times is faced with 
two major difficulties: one is only partial knowledge of the survival times due 
to censoring and the other is the non-Gaussian and non-symmetric nature of the 
distributions of survival times. In the classical view, the estimation of regression 
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parameters would ideally take place in the maximum likelihood framework, which 
provide asymptotically the most effective and unbiased estimates. These theoretical 
advantage may, however, be hampered by practical difficulties in the construction of 
the likelihood function, which requires computation of probability of the data given 
the parameter vector. Choice of the parametric type of this distribution is, practi-
cally, not possible on theoretical grounds. The choice of the distribution influences 
the regression coefficients, particularly by large contribution of data points with the 
long survival times. 
 On the other hand, the prediction error based methods are influenced by asymme-
try of the distribution of dependent variable, and some compensation may be needed 
for the distribution with heavy tail to reduce influence of the long survival times. In 
this context, the CPL-IR method appears to have a natural robustness property by 
the fact, that the contributions of the individual survival times to the overall model 
error are linear.  This can be an advantage over least square error based procedures 
which were also extended to some cases of censored data [14]. 
 The Weibull-distributed survival times in the simulated dataset considered as 
example are very favorable for the proportional hazard Cox model, because the 
model assumptions are fulfilled. They are also parametrically compatible with 
the parametric maximum likelihood method. On the other hand, they are not as 
favorable for the CPL-IR method because of the asymmetry in the distribution of 
survival times, which may result in some bias in the estimates of the coefficients. 
Some small bias with respect to the mean bootstrapped coefficients is, however, 
also reported for the intcox procedure [13]. The logarithmic transformation of 
the survival time, used as a dependent variable in the CPL-IR and in the para-
metric survival regression models tends to reduce asymmetry of the distribution 
of times.
 The CPL criterion function (3) does not incorporate explicit information on the 
distribution of the survival times, and more detailed analysis would be necessary to 
detect if this can cause practically important bias in the estimated regression coef-
ficients. However, the asymmetry of the distribution function may be well compen-
sated by the logarithmic transformation of the time and the robustness of the criterion 
functions. The CPL function grows linearly and therefore is (relatively to e.g. least 
squares) not oversensitive to the cases which lay far from the regression hyperplane. 
Qualitatively, on the analyzed test data, the CPL model coefficients appear compa-
rable to the coefficients of the maximum likelihood model and compatible with the 
Cox model.  
 An additional advantageous feature of the CPL-IR method is that the complex-
ity of the criterion function minimization task, apart of the number of inequality 
constraints, does not significantly depend on the pattern of censoring (left-, right- 
or interval). In contrast, the logarithmic likelihood criterion used in the parametric 
regression involves more complex functional form for interval censoring than for 
one-sided censoring ([1], section 3.5). 
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 The formulation of the CPL-IR regression does not require special treatment 
of ties (several patients have the same survival times). The tied observations in the 
survival times may be abundant if time is measured as a coarse discrete variable, like 
months or years. Theoretically, such ties introduce large number of combinations of 
terms in the partial likelihood function and require special treatment in the classical 
Cox semiparametric methods ([1], section 8.3) to reduce computing time. 

5. Conclusion

The interval regression method based on the CPL criterion function minimization 
provides a unified treatment of exact and left-, right-, or interval-censored data in an 
arbitrary pattern using  computational framework of the CPL function minimization. 
The estimated model coefficients are similar to those obtained with other methods 
and appear acceptable for data mining and exploratory purposes.
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