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Multiple classifier fusion may generate more accurate classification than each of the con-
stituent classifiers. The aim was to examine the ensemble performance by the comparison 
of boosting, bagging and fixed fusion methods for aiding diagnosis. Real-life medical 
data set for thyroid diseases recognition was applied. Different fixed combined classifiers 
(mean, average, product, minimum, maximum, and majority vote) built on parametric and 
nonparametric Bayesian discriminant methods have been employed. No very significant 
improvement of recognition rates by a fixed classifier combination was achieved on the 
examined data. The best performance was obtained for resampling methods with classifi-
cation trees, for both the bagging and the boosting combining methods. The bagging and 
the boosting logistic regression methods have proven less efficient than the bagging or the 
boosting of neural networks. Difference between the bagging and the boosting performance 
for the examined data set was not obtained.

K e y w o r d s: thyroid disease diagnosis, combining classifiers performance, bagging, 
boosting, trees, logistic regression, neural networks

1. Introduction

If in a discriminant problem we have a small learning set relative to the number of 
variables, e.g. if a data set is high dimensional, it is often difficult to build a good 
single classifying function. Such a classifier is biased or has a large variance and, 
consequently, a poor performance. In order to improve the generalization properties 
of a weak classifier (which has a poor performance) by stabilizing its decision, the 
techniques of regularization or the method of noise injection have been developed 
[1]. The further approach is merging of the classifiers into a power decision rule. 
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This idea comes from the following considerations. Individual learners perform 
well in some situations and fail under other conditions. Thus the identification of 
the best classifier is often not easy, especially when the performance of the learn-
ers is assessed for train sets with restricted number of cases. The results of many 
studies that have led to the conclusions that no single discriminant function is 
applicable to all problems have stimulated the technique of combining of classi-
fiers. Instead of often no optimal selecting only one best single learner, we may 
advance the classification performance by combining the “rival” learners. Two 
types of combining of classifiers are known: classifier selection (e.g. selection of 
the classifier with best performance in the input subspace, where the observation 
belongs- i.e. selection of the classifier which is an expert in some local area) and 
classifier fusion (ensemble of classifiers). In the paper the latter technique is used 
for combining. 
 Joining of classifiers to achieve a higher accuracy is an important research topic 
and is developed nowadays in many different directions. The aim of merging of in-
dividual classifiers is also elimination of a possible loss of information. Duin et al. 
[2] showed that although the individual classification performances on the difficult 
datasets are weak, they can still provide valuable information for the combining 
rules. Combining of classifiers may create a relationship not available in any base 
classifier. The performance of the combining method is usually expected to be better 
than (mean) recognition rate of the constituent classifiers. 
 Combining the classifiers is a way of model variance reducing, though in certain 
situations it also reduces bias. Multiple classifier systems have been created in a 
variety of pattern recognition fields [3]. 
 There are several approaches to obtain the ensemble of different classifiers, 
e.g. a linear combination of the estimated conditional class probabilities, averaging 
of the resulting classifiers’ parameters or a majority voting of the predictions of the 
individual classifiers. 
 The purpose of the study is an experimental comparison of classification errors 
of three ensemble methods: simple fixed combining of classification rules (that are 
built from three different Bayesian discriminant methods) and bagging as well as 
boosting of classification trees, logistic regression or neural networks based on the 
dataset for the thyroid disease recognition.

2. Materials and Methods

The idea of combining of classifiers was applied to assess the ensemble perform-
ance with the usage of a real medical dataset. The big data set of thyroid disease 
records (3 groups) was used (//www.ics.uci.edu/~mlearn/MLRepository.html) 
[Accessed 2011, February 1]. The training and the testing sets consisted of 3772 
and 3428 examples, respectively. All of 21 variables (15 binary and 6 continuous) 
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were considered. The data set has a big size of learning groups as compared to the 
dimensionality, but the difficulty is that the size of third group is much smaller 
than the others. 

2.1. Combined Classifiers 

In many applications of statistics in biomedical sciences, the challenge is to classify 
new observations according to multiple correlated variables and classifiers built 
from these variables. However, the results may diverge substantially depending on 
the choice of the specific classifier. One option is to attempt a different procedure 
of the classifiers “fusion” into a one combining rule. Combining of information is 
very important in modern research domains. For example, in modern statistics the 
statistical tests based on combined results have been developed. The idea of infor-
mation ensemble is very intensively developed in multidimensional discriminant 
analysis. Intuitive justification of fairness of information joining concept may be 
presented in the following way. Averaged measurements are usually more correct 
than a single outcome, if the individual measurements are more often different than 
similar. Additionally, averaging of the measurements is the more stable method than 
taking into account only an individual mensuration. The corresponding fact is met 
in the discriminant methods: a weighted average of outputs is often more accurate 
and more stable than an individual discriminant function result. Multi-sensor data 
fusion (e.g. joining the recognition of face, handwritten text and voice or merging 
outcomes from different wave frequency ranges) and decision ensemble has been 
applied in the modern classifiers methods. 
 The simplest situation, in which combining is very efficient, is the one, when 
we have a set of two-groups two-dimensional observations arranged in a plane in 
the way similar to four points illustrating well known XOR task (exclusive alterna-
tive problem). It is known that Vapnik-Chervonekis dimension (cardinality of the 
largest set of points that the algorithm can shatter) of single linear classifier is equal 
to 3. However, for four points described above no linear discriminant function can 
manage separating the points correctly (each linear function has an error bigger or 
equal to 0.5), while the simplest procedure of the combining only two linear discri-
minant functions constructs a perfect classifier. Another clear example of pooling 
of classifiers can be the fusion of classifiers which are appropriate (or even feasible) 
for discrimination of only two groups. Dichotomous classifiers can be merged in 
several ways, e.g. by the fusion of the classifiers which discriminate between all the 
pairs of groups or by joining the classifiers that distinguish between every group and 
all the remaining groups (for example, one-against-one ensemble or one-against-all 
ensemble, respectively, can be applied to expand Support Vector Machines binary 
classification to the multiclass case).
 The recognition rate of the combination is usually better than that of each indi-
vidual classifier [3]. This is particularly met when the ideas of construction of the 
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constituent classifiers are distinct (e.g. combining of linear discriminant function, 
classification tree and radial basis neural network) or different sources of diversity 
between classifiers can be employed, e.g. by resampling the training set (like in 
bagging, boosting or random subspace procedure) or by using different subsets of 
variables- disjoint or not disjoint (like in random subspace methods). 
 Duin and Tax [2] present three groups of combining of classifiers:
 1. Parallel combining of classifiers –for different feature sets (parallel combiners 
are often of the same type).
 2. Stacked combining of different combiners on the same future space (stacked 
classifiers are often of different nature, e.g. the nearest neighbor, Bayesian parametric 
discrimination and the neural network).
 3. Combining of weak classifiers (large sets of simple classifiers: bootstrapping-
bagging, boosting or random subspace methods).
 Simple fusion (fixed) methods as minimum, maximum, mean, median, product 
and majority vote can be used as the parallel (for different, maybe disjoint, feature 
sets) and also as the stacked classifiers [2] (on the same future space). The results 
of the latter method, i.e. the stacked classifiers, will be examined. Combining of the 
multiple models by (weighted) voting, averaging, by median, product rule (product 
rule is equivalent to taking geometric mean of the base classifiers results) makes 
available considerable improvement in performance along with tighter confidence 
intervals. Another ensemble method is to treat the classifier outputs simply as the input 
of the second-level classifier and then the classical pattern recognition techniques 
for the second-level design can be used (e.g. linear, quadratic, kernel, logistic or 
nearest neighbor in second-level step). These methods are called trained combining 
classifiers [2]. In the work the trained combining with Bayesian discrimination in 
the second discrimination step was applied. However, the performance of the trained 
combining have proved worse than for the fixed combining, so the results of the 
trained combining are not in detail discussed in the paper.
 Usually, the methods from the group of resampling of the dataset are applied to 
decision trees and neural networks, but they also perform well with other classifica-
tion rules [5]. 
 In this paper the bagging and the boosting ensembles were applied for e.g. for 
trees known as unstable (i.e. small changes in the training set lead to important 
changes in the classifier) and weak classifiers. A weak classifier means a classifier 
with the accuracy only slightly better than the chance (for example for two groups 
discrimination the lower limit of the accuracy level is equal to 0.5). To understand 
the idea of combining of the weak classifiers let’s imagine the following example. 
If there is a big group of committee members, who “rather” do not make mistake 
(i.e. when the probability of good answer is bigger than 0.5) and we assume that 
they answer independently, a correct answer after voting their answers can be 
obtained with big probability. If p-common error rates of the constituent classi-
fiers are assumed, the upper boundary of the probability that the majority vote 
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of L independent classifiers is incorrect, can be simply calculated from binomial 
distribution by:
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It can be derived from the formula that, after pooling as little as L = 7 independent 
classifiers, the increase of correct classification possibility is obtained even for weak 
base classifiers. For bigger number of the independent classifiers L = 13, each with 
classification error equal to 0.3, the voting ensemble classifiers error is equal to 0.06, 
so is significantly smaller. However, if the classifiers are not better than chance (it 
can be imagined that are not better than the classification of the pattern into groups 
randomly – with the probability proportional to the sizes of the groups), then merging 
of the constituent classifiers may fail to improve the performance. The weak classi-
fiers are often unstable. Base trees are unstable methods. In the presented empirical 
examination bagging and boosting were applied for trees but also for neural networks 
(also known as unstable) and for logistic regressions.
 The methods from the group of combining of classifiers work as follows: In 
bagging – Bootstrap AGGregatING [4], subsets from the training set are sampled, 
generating random independent bootstrap replicates. Next the classifier on each 
of these bootstrap samples is constructed and finally the constituent classifiers are 
aggregated by a simple majority vote. On the contrary, in the boosting method, the 
classifiers are constructed on the weighted versions of the training set, which are 
dependent on the previous classification results. In the next section those methods 
are described in details.

2.2. Combining of Classifiers Based on Resampling

Very important area of combining information is to apply classifiers built on the 
learning data subsets generated randomly. Succeeding loops in the construction of 
classifiers are defined by random subsets based on the same training set. These sub-
sets may depend on the results of combining classifier performance achieved in the 
previous loops (like in the boosting ensemble) or may be independent (like in the 
bagging and the random subsets ensemble, e.g. the random forests methods). Next, 
the results of constituent classifiers can be merged in different ways. Traditionally, 
the constituent classifiers in bagging and boosting are of the same general form. For 
example, exclusively neural networks or decision trees can be such homogenous 
constituent classifiers. In such a case only the final parameter values differ among 
them due to their different sets of the training patterns. Besides the training samples’ 
and variables’ selection or the extractors’ selection to reduce the dimensionality, one 
needs to make a decision on the number and types of classifier to be used and finally 
how to merge them.
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2.2.1. Bagging (Bootstrap AGGregatING) Breiman [4]

Bagging attracted much attention, probably due to its implemental simplicity and 
popularity of the bootstrap methodology. Bootstrap sample is trained B times from 
the learning set with the possible replacements, where n is the size of training set. 
The classifier on each bootstrap data set is trained. The resulting classifiers are then 
combined, e.g. by the average of posterior probability or the unweighted majority 
vote. The process of generating the classifiers is parallel, so can be executed on dif-
ferent computers.

Bagging algorithm
Assume that we have a training set (xi,zi), i = 1,…,n, of patterns xi and class labels zi.

1. For b = 1,...,B, do the following: 
(b-the number of loop)
(a) Generate a bootstrap sample of size n by sampling with replacement from 
the training set; some patterns will be replicated, others will be omitted.
(b) Design a classifier, Kb(x).
2. Classify a test pattern x by recording the class predicted by Kb(x), b = 1,...,B, 
and assigning x to the class most represented.

2.2.2. Boosting Procedure

Increasing the performance of weak classifiers, called from this reason “boosting”, 
is originated from Freund & Schapire [6] ARCing-Adaptive Resampling and Com-
bining. In the boosting method the weights of misclassified cases are increased. 
This technique focuses on the informative or difficult patterns. In boosting, firstly 
a classifier with accuracy greater than average on the training set is created. Next, 
the boosting method adds new component classifiers to form the combined classi-
fier. The joint decision rule of the ensemble has an arbitrarily high accuracy on the 
learning set. In this way, performance of the joint classifier is improved. Boosting is 
a deterministic procedure. It sequentially generates learning sets, where weights of 
misclassified cases are increasing, and as the effect it also generates the classifiers 
constructed on them. 
 The most popular boosting procedure is AdaBoost (Adaptive Boosting). This 
procedure allows the designer to continue adding weak learners until some desired 
low training error has been achieved. AdaBoost procedure used for weak classifiers 
can reduce the training error even exponentially if the number of the components is 
increased [1].

AdaBoost algorithm (Adaptive Boosting)
1. Initialize weights wi = 1 / n, i = 1,...,n.
2. For t = 1,...,T, (t – number of loop)
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(a) construct a classifier Kt(x) from the training data with the weights wi,
 i = 1,...,n;
(b) calculate et error as the sum of the weights wi corresponding of misclassi-
 fied patterns;
(c) if et > 0.5 or et = 0 then terminate the procedure, otherwise set 
 wi = wi(1 – et )/ et for the misclassified patterns and renormalize the weights
 so that they sum to unity.
3. For a two-class classifier, in which
 Kt (x) = 1 implies x is from population Π1,
 Kt (x) = –1 implies x is from population Π2
create the weighted sum of the classifiers,
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and assign x to the population Π1 if K(x) > 0.

 Boosting is connected with the game theory and learning programming. The 
relationship between boosting and logistic regression also exists. The outcome base 
classifiers can be combined by the simple majority vote or the weighted version of 
the majority vote. In the case of the linear weighting of classifiers- the weighting is 
performed two times: firstly in the construction of data sets focusing on the errone-
ously classified patterns, and, secondly- in combining the obtained classifiers. 
 A weak classifier that is only slightly better than chance is the minimum require-
ment for bagging and boosting. For example, for a big training set, the easy linear 
Nearest Mean Classifier, after boosting, performs similarly to the efficient support 
vector machines [7] (SVM and boosting focus on difficult patterns) . 
 The boosting procedure can be applied in different ways. Effectiveness of three 
variants of the boosting classifiers, with aggressive, conservative and inverse chang-
ing weights, were examined by Kuncheva and Whitaker [8]. 
 Bagging can be useful for critically small data sets [5], in unstable situations, 
while the theory of boosting is developed for weak classifiers built on large train-
ing sample sizes. For very large sample sizes, classifiers constructed on bootstrap 
replicates are similar and therefore bagging (or random forests) can be not ben-
eficial. Thus, for stable classifiers (e.g. linear for big datasets), bagging has been 
regarded as useless. However, in contrast to the common opinion, Skurichina & 
Duin [5] demonstrated in respect to the linear discriminant function that useful-
ness of boosting does not depend directly on instability of the classifier. It depends 
rather on quality of the incorrectly classified objects (usually near the boundary 
between the discriminated classes) and on ability of the classifier to distinguish 
objects correctly. From the bias-variance point of view boosting reduces both the 
variance and the bias of the classifier, while bagging is the most efficient in reduc-
ing the variance. 
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 If correct Bayesian classifiers are trained on distinct sets of variables, then 
a weighted product rule is the optimal combination scheme (e.g. the classifiers built 
on data from different sensors). Product combing is more sensitive to imperfections 
in the individual classifier, and a sum (or median) fixed combining is more reliable 
in practical situations.
 In the presented paper effectiveness of the combining of multiple classifiers 
in aiding diagnosis of the thyroid disease was compared. Firstly, for simple, fixed 
combining of the constituent Bayesian discriminant classifiers, such as parametric 
linear discriminant method and also nonparametric kernel and nearest neighbor, 
were used (Table 1). For these discriminant functions, the operations of simple, fixed 
aggregation rules, such as minimum, maximum, average, median, sum, product and 
majority vote, were studied. 
 In turn, individual classifiers coming from the group with other idea i.e. ensemble 
based on generating the random subsets of training set were applied for ensemble 
methods. Namely, for the resampling methods, all classification trees, all logistic 
regression methods or all neural networks-linear multilayer perceptron procedures 
were applied.
 Performance of the combined classifiers was assessed for comparison purposes 
by both resubstitution (i.e. apparent errors, errors on training set) and test sample 
errors.
 A different character of the constituent classifiers is usually a reason for diversity 
of the ensemble. Diversity among the individual classifiers of the team is expected 
to be the important factor to improve effectiveness in the classifier combination. 
Diversity can be obtained by different ways: different character of the classifiers (eg. 
parametric and nonparametric; crisp and fuzzy), different parameters of the same 
type classifier, different subsets of variables and different subspace of observations 
obtained, eg. by the resampling methods. Ensemble of the classifiers merges the 
diverse classifiers, especially boosting imputes diversity by design.

3. Results and Discussion 

For all studied ensemble methods, the combinations of different classifiers on the 
same feature set were examined, so stacked combining was applied. First of all, the 
simple fixed fusion methods and finally bagging and boosting were performed. Fixed 
methods can be considered as simple combining methods, because for decision fu-
sion we do not need to model a joint distribution. The simple fusion procedure may 
be based on fixed combination rules like for example product or average; however, 
only under strict probabilistic conditions these rules are optimal. For example, the 
product combiner rule needs strict conditions for optimality- it is optimal under the 
conditional independence in the given class [1]. 
Firstly, only 3 constituent Bayesian classifiers were combined: 
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 LDF linear discriminant function (with test error= 0.06), 
 KDF kernel discrimination with normal kernel, radius for kernel function r = 0.5
 (test error = 0.0614) and 
 NN the nearest neighbor with k = 7 neighbors (test error = 0.0597). 
 The above parameters: radius r and number of neighbors k were chosen to obtain 
the smallest leave-one-out error. Combining makes usage of the different advantages 
of diverse classifiers. Averaging or other ways of joining of classifiers’ results (e.g. 
voting) usually reduce effects of base classifiers’ overtraining, so can be treated as 
some kind of regularization.
 The results for combining those classifiers can be seen in Table 1 presenting the 
test-sample errors of classification. From the table we may conclude that perform-
ance of the combination rules of only three Bayesian discriminant methods examined 
are not greatly better than the best individual classifiers. It can be explained by the 
information of a very big sample size as compared to the number of variables (21) 
and also by the fact that the used constituent classifiers were chosen as the best in 
their classes. The lack of performance improvement can be considered also as coming 
from the following reason: the linear, the kernel and the nearest neighbor discrimina-
tions come from the same group of Bayesian discriminations, so the high diversity 
among the component classifiers is not hold. However, a multiple classifier system 
can significantly improve the performance, when the members in the system are not 
only different from each other, but if also the base classifiers are not the best in their 
classes. 

Table 1. Test-sample classification errors of the stacked fixed combined classifiers (linear discriminant
function LDF, kernel discriminant function KDF and nearest neighbor classifier NN)

Fixed combined method Test errors 
Maximum 0.032
Minimum 0.034

Majority Vote 0.058
Product 0.034
Median 0.075
Average 0.053

 When a high diversity between two or more different data mining techniques 
exists, combining them often produces better classifications. The relationship between 
different combining accuracy and diversity of the classifiers’ ensemble was studied 
on data generated by Kucheva &Whitaker [8] and Shipp et al. [9]. Ćwiklińska-Jur-
kowska et al. [10] studied this relationship of ensemble methods’ performance with 
diversity for the large real-life medical data of thyroid examined in this paper.
 It is interesting to compare the performance of such fixed methods (Table 1) 
with more time-consuming resampling methods, such as bagging and boosting. 
Usually bagging, boosting (and random subspace method) are applied to deci-
sion trees, where they often produce an ensemble of classifiers, which is superior 
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to a single classification tree rule. In the present study, the bagging and boosting 
ensembles applied with the following discriminant methods: classification trees, 
neural networks multilayer perceptron with 3 hidden units and logistic regression 
are summarized in Table 2. Different relationships are represented by each of these 
applied base classifiers. For example, logistic regression assumes a linear relation 
between the explaining variables and the target, while neural networks suppose a 
nonlinear relation, which is discovered depending on the architecture and the acti-
vation functions. In turn, decision trees assess constant values within rectangular 
or cuboid regions of the input space. 
 Classification test errors obtained for the resampling methods with the unsta-
ble classification trees were smaller than for the simple fixed combining of three 
Bayesian classifiers (LDF, KDF and nearest neighbor). Additionally, the test errors 
of bagging and boosting of neural networks, which are also unstable methods, are 
also lower, however, only for some fixed fusion methods like median, average and 
majority vote in combining three Bayesian classifiers (Tables 1, 2). 
 From Table 2 we can also make the comparison of the bagging and boosting 
performance for the constituent classifiers such as logistic regression, neural networks 
and classification trees.
 The difference between the bagging and the boosting of neural networks per-
formance is not evident and additionally is not visible between the bagging and the 
boosting of trees errors (Table 2). It can be explained by the big size of the data sample 
in comparison to dimensionality (21 features), because the difference between the 
bagging and the boosting performance for the unstable classifiers is especially clear 
for small datasets.
 Only for the stable logistic regression classifiers, the difference between bag-
ging and boosting is observed. For the logistic regression the results of bagging are 
better than the boosting outcomes- the difference of performance measured by the 
test-sample error is on the level from 0.016 to 0.026. 
 Bagging and boosting of logistic regression procedures give worse performance 
than bagging and boosting of unstable methods: trees and neural networks. Bagging 
and boosting of logistic regression are also worse than for almost all simple fixed rules, 
i.e. for minimum, minimum, majority voting, product and average of three posterior 
probabilities coming from the considered Bayesian classifiers (Tables 1, 2). 

Table 2. Test-sample and training classification errors of bagging and boosting classifier on thyroid data set 

Resampling method Train error Test error
Boosting logistic regressions (100, 150 loops) 0.05-0.06 0.07-0.08
Bagging logistic regression (100, 150 loops) 0.045 0.054
Boosting neural networks (10 loops) 0.0267 0.0367
Bagging neural networks (10,20,30,40,50,60 loops) 0.028-0.034 0.035-0.04
Boosting trees (10,15,20,50, 100 loops) 0 0.01
Bagging trees (10,15,20,50, 100 loops) 0 0.01
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 The boosting classification trees errors (both resubstitution error and test-sample 
error) for loops from 1 to 20 are presented on Fig. 1, as well for the base classifiers 
as for the ensemble classifier. On this plot the train and test-sample errors of the 
succeeding loops are contrasted to the ensemble classifier errors (described in the 
caption). Analyzing Fig. 1, the very good performance for the combined decision 
trees after the process of boosting with 20 loops can be noted (the level lines denoted 
in the caption as “Boosting Train error” and “Boosting Test error”). Because the 
boosting method is focused on difficult patterns, the training error of each succes-
sive component tree classifier (the line “ Succeeding loops train error”) for number 
of loop from second to tenth is usually larger than for the previous classifiers in the 
loop (which represent points lying on the left side to the current loop point). At the 
same time the train and test ensemble error (the levels of two errors are denoted by 
the lines “Boosting Train error” and “Boosting Test error”) is considerably smaller 
than the single component tree errors (and the mean errors) at the beginning first 10 
loops of the procedure. For the test errors of single tree classifiers (the line “Succeed-
ing loops test error”) increasing tendency is also visible. However, the magnitude of 
test error is much smaller, not greater than 0.02, while the train error of succeeding 
loops reaches even 0.08. After first ten loops the train errors rapidly diminish, the 
decrease of test errors is also important.
 Comparison of the “Boosting Train error” level with the averaged values of the 
line “Succeeding loops train error” and comparing the “Boosting Test error” level 
with the averaged values of the line “ Succeeding loops test error” visualize the 
following facts. The train and test errors of the combined methods are significantly 

Fig. 1. Component classifiers and combined methods errors for the boosting procedure of 20 classifi- 
cation trees
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smaller than the corresponding averaged constituent classifiers errors from the loops, 
for both bagging and boosting. This benefit of the combining can be explained by 
the fact that when the component classifier performs better than chance (met in the 
performed analysis of the examined dataset), the weighted decision ensures that the 
training error will be smaller than for the constituent classifiers [11]. 
 Figure 2, constructed similarly to Fig. 1, contains the component classifiers and 
combined methods’ errors for the boosting procedure, however for 25 base logistic 
regression discriminations. Though for 25 loops of the boosting logistic regression 
functions, the train and the test errors of the successive loops do not have such ten-
dency of diminishing after some number of loops (the lines “Succeeding loops train 
error” and the “Succeeding loops test error” on Fig. 2), the combining method has 
again the ensemble error significantly smaller than the average of all loops errors. 
It holds both for the test and train error. 
 Summarizing, the averaged train and test-sample errors of the succeeding loops 
are bigger than the ensemble classifier errors for boosting as well classification trees 
and for boosting 25 logistic regressions. The very important stage in the construc-
tion of the ensemble classifier feature for the model is the selection of the number 
of loops which can be considered as a regularizing parameter. For this reason plots 
of the type similar to Figs 1 and 2, in the form of learning curves (dependency of 
the errors on number of loops) may be useful in the selection of ensemble. 
 Relationship between the train-sample and test-sample errors of the constitu-
ent classifiers in all 150 loops of boosting of logistic regressions can be assessed in 

Fig. 2. Boosting of 25 logistic regressions. The train and test errors of succeeding loops compared to the
ensemble classifier errors
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Fig. 3, where the different loops are represented as different points. Spearman cor-
relation between these errors is equal to -0.34. Thus, generally smaller classification 
errors assessments for new observations (which are independent on training set), 
measured by the test sample error, is not obtained for the very small training errors. 
Boosting is focused on difficult patterns, what can consequently cause the high train 
errors for sequential constituent classifiers. Classifiers with the high train errors are 
repesented by points mostly located in the right-bottom part of Fig.3. The number 
of component logistic classifiers with train errors over 0.4 is much higher than the 
number of classifiers with test errors over 0.4. More than half of the base classifiers 
test error are below 0.1, while only a few learning errors of the base classifiers are 
below 0.1.

Fig. 3. Relationship between the train and test errors of the constituent classifiers in boosting of 150 
logistic regressions

 The best performance among the examined ensemble methods was obtained for 
both bagging and boosting of classification trees. For the resampling methods (for 
both bagging and boosting ones) better pooled classifiers are obtained when build on 
the trees than the ensembles constructed on the logistic regressions (Table 2). Also 
results of the trees combined classifiers are better than for the simple fixed combining 
of three Bayesian classifiers, while the resampling of the logistic regression is not 
considerably more efficient, than the fixed combining of three Bayesian classifiers 
(compare Table 1 and Table 2). For both resampling methods, bagging and boosting, 
the smaller train errors and test errors were obtained for the base neural networks, 
than for the logistic regression classifiers. 
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 Skurichina and Duin [5] report that for linear classifiers, bagging may improve 
the performance on classifiers constructed on a critical training data set (when size of 
the learning set is comparable with the dimensionality, when even the linear classifier 
can be unstable); however, when the base classifier is stable (e.g. the nearest mean 
classifier is typically stable), the bagging procedure is useless, will lead to a little 
improvement. In the data set, presented in the current paper, the dimensionality is not 
smaller than the number of observations and the logistic regressions are not unstable. 
From the results obtained in the presented study it can be concluded that bagging is 
particularly useful for the unstable methods: neural network and classification trees 
and is useless for the stable logistic discrimination. 
 Bagging and boosting of trees and neural networks are more time-consuming 
methods, so they may perform better than fixed combining of three Bayesian meth-
ods. These resampling procedures can use different functions as a base classifier, 
but are especially useful for unstable classifiers and they make efficient usage of 
the data.
 In the combined classifiers methods, each classifier may obtain somewhat diverse 
subsets of the train data or parameters. Bagging and boosting are connected with 
the resampling the original dataset, so in this way diversity is forced on the base 
classifiers and diversity may be useful for performance improving [8–10].
 Despite the performance benefits coming from the bagging and boosting proce-
dure, a drawback should also be mentioned in the context of supporting the diagnosis. 
The discomfort for the resampling methods comes from the fact that for both bagging 
and boosting: physician has no simple interpretation, like for single tree or else easy 
method, e.g. linear discrimination leading to score diagnosis system.

4. Concluding Remarks

Bagging and boosting are more time- consuming methods than the fixed combining 
methods and the resampling methods as bagging or boosting perform better than 
the fixed combining methods. Bagging and boosting are connected with resampling 
the original dataset, so the useful diversity is forced on the base classifiers. Thus the 
improvement of the performance is obtained. Better improvement by using these 
resampling methods was obtained for the unstable methods such as classification trees 
and neural networks, where the resampling methods make efficient usage of the data. 
The lack of significant difference of performances between bagging and boosting 
may be explained by the big sample size in comparison to its dimensionality.
 The smallest test classification errors for the bagging and boosting method of 
the classification trees were obtained. The excellent results were obtained after only 
10 loops. The number of loops is a very important feature of the resampling method 
and can be considered as some kind regularization parameter. 
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