ANALYTICAL MICROSYSTEMS FOR BIOMEDICAL AND ENVIRONMENTAL APPLICATIONS

Nicole Jaffrezic-Renault, Abdelhamid Errachid

University of Lyon, Laboratory of Analytical Sciences, France

Abstract

Two types of analytical microsystems for the detection of species of interest in biomedical diagnosis and in environmental monitoring are specifically described in this paper.

We describe a novel device that will measure whole blood concentration of D-dimer, a recognized biomarker of increased blood clotting activity and that will then offer opportunity to use the test in the point of care setting. The device combines innovation in antibody bio-engineering for high specificity immunoassay-based diagnostics and nano/micro engineered impedimetric analysis electrodes incorporating a biocompatible polymer substrate with development of a disposable microfluidic manifold, enabling diagnostics at the point-of-first-contact.

The feasibility of a generic microsystem integrating a microfluidic system of concentration and a module of electrochemical detection is demonstrated for the four metals of the European directive (OCE 2000/GO/EC) for the quality of water resource: cadmium, mercury, lead and nickeI.

Keywords: analytical microsystems, fluidic microsystems, Electrochemical Impedance Spectroscopy, Deep Venous Thrombosis, water resource, heavy metals, diamond like carbon