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This paper presents the estimation methods of subtle hypodense changes of brain tissue in 
noncontrast CT scans. The purpose of reported research is improved detection of direct signs 
of hyperacute ischemic stroke. Proposed tool is nonlinear approximation in base of multiscale 
functions with respective thresholding. Different rationales for best basis selection were 
considered. Several local bases including wavelets, curvelets, contourlets and wedgelets 
were considered and characterized with a criterion of as fast as possible approximation error 
decay. Adaptive thresholding was suggested for defining of nonlinear approximation space 
for different image models. Procedures of estimation and extraction of diagnostic information 
were experimentally verified. Improved diagnosis of acute stroke cases was reported.
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1. Introduction

Multiscale methods of image representation and useful content approximation due 
to information or even knowledge extraction were developed on a basis of ‘Fourier 
kingdom’ with a series of harmonics and respective integrals. Making good use of 
Fourier’s assertions has spawned an amazing array of concepts over the last two 
centuries. One of exciting concepts is decomposition of a priori difficult to recognize 
and understand classes of signal functions in a functional space into a superposition 
of time-frequency atoms. These atoms are naturally associated to cells obtained 
through geometrically motivated cutting and pasting of time, frequency, or related 
domains (i.e. space, scale) [1].
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 For the purposes of this paper, the multiscale methods refer to general wavelet 
family of local time-frequency decompositions. Because of nature of CT images, 
discrete wavelet transform definition with multiresolution analysis was extended 
to geometrical wavelets, i.e. wedgelets and beamlets, and especially to directional 
wavelets, i.e. ridgelets, curvelets, contourlets. The wavelets with 2D kernels more 
efficiently approximate curve singularities corresponding to local edges or structure 
margins of diagnostic importance.
 Challenging application of the multiscale image approximation methods is ex-
traction of hidden or subtle signs of hyperacute ischemic stroke in noncontrast CT 
brain imaging. The CT finding of parenchymal hypodensity including the size, shape, 
form and location may be specific for irreversible tissue damage. The hypodense area 
of lowered density in localisation corresponding with clinical features is a direct, 
convincing infarct sign in respective cerebral hemisphere [2]. The CT brain image 
in acute stroke patients is not self-evident. Many infarcts do not emerge on CT until 
hours after the onset of stroke. Subtle hypodense changes with low and variable 
progression rate are masked due to discrepant patient characteristics, non-optimum 
scanning and acquisition conditioning, bone artifacts, noise and other tissue abnor-
malities [3]. Therefore direct pathology signs are sometimes invisible or very slight, 
ill defined, not well outlined on the initial CT-scans during the hyperacute phase of 
stroke (0–6 h) – see Fig. 1. 
 Methodologically, the clue problem of the disease signature extraction we deal with 
is construction of effective method of nonlinear approximation [4]. The  fundamental 

Fig. 1. Time progress of hypodense changes on the noncontrast CT scans in the patient with ischemic 
stroke: two successive scans (up and down) 1h after stroke onset with subtle hypodensie changes 
(obscuration of gray/white matter differentiation), 27h after the onset with clearly visible signs of the
disease, 10 days and 13 days after the onset with reduced ischemic changes after therapy (left to right)
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problem is to decompose a possibly complicated target function  (signal) by simpler, 
easier to compute functions called the approximants. Increasing of the resolution of 
approximated function representation can generally be achieved by increasing the 
complexity of the approximants. On the other hand, increasing of essential simplicity 
(not coarseness) of the target function representation means perfecting of adaptive 
selection of the approximants related to that essence. In this scheme, the information 
known about the target signal, its essence and unusual components (e.g. diagnostic 
knowledge related to the image expressions) is used to construct the approximants.
 The purpose of our research reported in this paper is considering the multiscale 
basis with possibly the highest rate of approximation in a context of challenging 
true problem of computer-aided diagnosis. Extraction possibility of hypodensity 
signatures was studied and experimentally verified.

2. Methods of Disease Sign Extraction

The estimation of useful signal (target function) in presence of noise and unusual 
structures is possible by finding a representation that discriminates the target function 
features from the noise, approximation of diagnostic information in adaptive stra tegies 
depending on the signal properties and attenuation of the noise while preserving or 
even emphasize the signs of disease signatures.
 For the effective target signal extraction, especially a non-linear approxima-
tion in an orthonormal basis plays an important role [4]. Useful signal features are 
approximated with just a few vectors selected adaptively within a basis. The key 
issue is the optimal basis selection, which should be able to accurately describe all 
diagnostically important signal features within numbers of the basis elements held 
as small as possible. 

2.1. Assumed Diagnostic Information

A priori knowledge is extremely important for the effective target function estima-
tion. Natural body structures are imaged as smooth functions of specific textures with 
more or less sharply outlined margins (assuming continuous or high resolution image 
model). Such target function is distorted by noise or artifacts depending on imaging 
conditions. Subtle pathology changes firstly expresses as a local distortion in specific 
signal distribution. Emerging margins of disease can be modeled as the presence of 
signal function singularities, i.e. subsets of domain at which a given function behaves 
abnormally (i.e. it is discontinuous, non-differentiable or even undefined, etc.). The 
singularities and irregular structures often carry essential information in a signal. 
In case of 1D signal we talk about point singularities (with dimensionality equals 
to 0), for images (2D signals) an important family of linear or curve singularities 
corresponds to local edges and structure boundaries (with dimensionality equals to 1). 
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Moreover, detected singularities limit tissue areas of slightly changed characteristics, 
e.g. slightly reduced local density in relation to medical knowledge-based patterns 
of structures and spatial tissues distribution [2].
 Subtle hypodense changes of relatively darker tissue areas with reduced density 
can be characterized by high regularity function of gray-values with diversified, 
low gradient edges hidden in noise. Hypodense density changes are relatively small 
(up to 10HU for acute stroke) and area outline is naturally regular. If the image is 
 modeled raw by raw (or column by column) as 1D signal, the margins are analyzed 
as the point singularities (see Fig. 2a–b). Otherwise, the margins are represented by 
the curve singularities while natural 2D image model is used (Fig. 2c–d).

Fig. 2. Simple models of hypodensic area for exemplary ischemic stroke case: (a) visible area cut of the 
CT scan with indicted image profile line; (b) noisy line profile with approximated signal tendency as 
dashed line that represents decreased tissue density in hypodensity interval (see Fig. 4); (c) temporary 
selected region of the scan with enlarged contour curve estimation (see Fig. 3) – (d) and mean density

(i.e. gray-value) distribution of the selected region and surrounding tissue – (e)

2.2. Nonlinear Approximation

Approximation problem can be efficiently solved, especially for signal (image) 
enhancement or compression procedures, by nonlinear matter in a basis with highly 
optimized form of two stages. Firstly, in order to find the best solution we need to 
choose a ‘good’ basis adjusting to the target essence with satisfied complexity related 
to information resolution. Nonlinear approximation is completed with adaptive selec-

a)         b)

c)
         d)   e)
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tion of a set of the best approximants related to this good basis. Resulting estimation 
of the essence, hidden in redundant, noisy or disturbed target signal is required ef-
fect. Our understanding of these highly nonlinear methods is quite fragmentary and 
characterizing the functions with specified rate of highly nonlinear approximation 
remains a challenging problem [4].
 More formally, an approximation process can be simply defined in a Hilbert space 
H with inner product 〈.,.〉 and norm | · |H . Let {ϕi}i = 1, 2... be an orthonormal basis for 

complete H. Each signal f ∈ H can be decomposed in this basis f ai i
i

=
=

+∞

∑ ϕ
1

 with the

coefficients of orthogonal expansion ai = 〈f,ϕi〉. For linear approximation of f ∈ H, 
we use orthogonal projection of f over the linear space HN := span{ϕi :1 ≤ i ≤ N} and 
get approximate signal: 
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=
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In case of nonlinear approximation we replace HN by the nonlinear space AN for 
expression of �f ∈ H  as:

   �f ai
i

i=
∈
∑

Λ
ϕ , (2)

where Λ ⊂ N is a finite set of indexes with the cardinality #Λ = M ≤ N. In linear 
approximation the N basis vectors are selected a priori while for nonlinear ap-
proximation expansion the basis is improved by choosing M terms depending on the 
meaningful features of approximated  f. Highly nonlinear scheme starts from linear 
signal representation in orthonormal ‘good’ basis followed with adaptive selection 
of the best approximants. 
 The approximation theory characterizes the error produced by different approxi-
mation schemes. The approximation efficiency corresponds to the approximation 
error measured by 

    ε N
f

f f f
N

( ) infH
A H

= −
∈��

�  (3)

for the nonlinear scheme. Especially, the decay rate of ε N f2 ( )  for increased number 
of the selected approximants M is a measure of the approximation efficiency and 
reflects ability of the signal energy packing. Generally, for a given α > 0, we look 
for such f ∈ H approximation that ε α

N f C M2 ( ) ≤ ⋅ −  for some constant C > 0 and 
M = 1,2,... Consequently, those basis functions that representatively express the 
most important, precisely characterized and distinguishable features of the target 
function should have high enough coefficients of the signal expansion in the 
 approximation space.
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2.3. Wavelet Bases as Good Approximates

Multiscale wavelet basis were found extremely useful for representation of target 
essence of wide class of signal functions, including medical problems [5]. Wavelets 
are tailor-made for nonlinear approximation because of fast and simple computation, 
simplified characterization of approximation spaces based on almost unconditional 
function classes with controlled regularity and transparent strategies of basis selection 
and target function estimates [6]. If the target function is smooth on a region of inter-
ests, coarse scale coefficients of dyadic decomposition approximate signal energy. For 
less smooth regions synthesized signal approximation includes appropriate wavelet 
functions of higher resolution scales. More accurate allocating terms in a nonlinear 
strategy depend on signal energy local distribution across scales and subbands. 
 A wavelet representation focuses on localized signal structures with a zooming 
procedure that progressively reduces the scale parameter. Local signal regularity 
is characterized by the decay of the wavelet transform amplitude across scales. 
Singularities are detected and interpreted by following the wavelet local maxima 
at finer scales. Distribution of signal energy in detailed wavelet domain reflects 
packed representatives of signal singularities and wide spread noise or ‘eaten’ 
smooth signal pieces. A nonlinear approximation in a wavelet orthonormal basis 
defines an adaptive grid that refines the approximation scale in the neighborhood 
of the signal singularities. 
 Considering dyadic wavelet basis { }, ,

ψ m n m S n Im−∞< ≤ ≤ < ⋅−0 2  adapted to L2[0,I] com-
pleted with scaling functions of the highest scale { },φS n n IS0 2≤ < ⋅−  noted as wavelet
φ ψS n S n, ,= +1  for simplicity, we have signal decomposition in nonlinear scheme as 

   �f f am n m n
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i
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Most function norms can be described in terms of wavelet coefficients. The selection 
of terms in the wavelet series which are the largest relative to the norm  measuring 
approximation error is a typical scheme of nonlinear choice. Thus nonlinear appro-
ximation error ε N i

i

f a2 2
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∉
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Λ
 is minimal and decays as M increases if Λ corres- 

 ponds to the M vectors that best correlate to f, i.e. having the largest coefficients 
of the expansion ai . For the set of indexes Λr = {ik}k = 1,2,...,M sorted according to

decreasing order of the corresponding coefficient: a ai ik k
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Because the approximants should be adjusted to the target essence, usefulness of 
the wavelet basis were considered for more or less regular signal models related 
to assumed diagnostic information. Principal theorem proves [7] that for smooth 
signals 
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and s > 1/2, linear approximation with Fourier basis gives error decay faster than 
M –2s. This set of smooth functions is Sobolev space, i.e. the functions are s times 
differentiable in the Fourier domain [8]. If s > n + 1/2, it means that f is n time con-
tinuously differentiable. It gives fast approximation decay for high enough regular-
ity of f without any help of the wavelet basis (applying of the wavelets with q > s 
vanishing moments gives similar decay rate). However, such approximation space is 
not accurate enough because diagnostically important discontinuities are not included 
in such model. When f is discontinuous with bounded variations, i.e. 

   f f t dt
V

= ′ < +∞
−∞

+∞

∫ ( ) , (6)

where derivative is taken in a sense of distribution, the error of Fourier linear ap-
proximation typically decays only like M –1. However, extension of the approxima-
tion to adaptive nonlinear scheme and more effective approximants of orthonormal 
wavelet basis with nonlinear selection of the basis can significantly improve such 
limited approximation efficiency. It can be proved that the adaptively selected wave-
lets give decay rate 

   ε N f o M2 2( ) = ( )−  (7)

for all bounded variation functions what is optimal for any orthonormal basis [7]. 
Characterizing of approximation spaces more selectively allows defining error decay 
rate more precisely for respective wavelet bases.
 Generally, for the signals with finite l p norm in basis decomposition, i.e. 
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for p < 2 we have nonlinear approximation with promising error decay ε N
pf o M2 1 2( ) = ( )− . 

Such approximation space relates to Besov spaces of functions in basis of compactly
supported wavelets { }, ,

ψ m n m S n Im−∞< ≤ + ≤ < ⋅−1 0 2
 that are C q with q > s vanishing moments

[9]. Besov space with parameter s = 1/2 + 1/p corresponds to functions that have
a ‘derivative of order s’ and have l p norm. Thus for smoother functions with grater s we have 
smaller p what means faster approximation error decay with smooth enough wavelets. 
 If f is modeled as piecewise-regular function then few wavelet coefficients 
are affected by isolated discontinuities and the error decay depends on the uni-
form regularity between these discontinuities. Such model for 2D domain seems 
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to be relatively well fitted to hypodensic area model. We approximate function f  
to be uniformly Lipschitz with α between finite number of discontinuities. Using 
smooth wavelet basis with q > α vanishing moments we achieve error decay rate 
ε α

N f O M2 2( ) ( )= − . More regular target function α > 1/2 means faster error decay 
than M –1 what corresponds to regular nature of the subtle hypodense changes. It 
suggests initial denoising of CT signal, especially in the signal intervals (or regions) 
of interests, for effective content estimation. However, subtle gradients informa-
tion distributed across higher scales should be preserved (see exemplary effect of 
denoising based on the nonlinear approximation in Fig. 2a) and even enhanced by 
well fitted basis of sharp wavelet functions. For difficult cases of hidden ischemic 
changes, additional procedure of margins enhancement is necessary. Next, regular 
pieces of the target functions are compactly represented by the high scale wavelet 
coefficients and such reduced image feature space is useful for classification and 
recognition of the disease signature.

2.4. Basis of 2D Wavelets

Generalization of wavelet basis to two and more dimensions by simple tensor pro-
duct extension has limited efficiency in compact representation of images structures 
with smoothly varying gray-values and smooth boundaries. Separable wavelet 
basis in L2(R2) is not flexible enough to represent curve image singularities. The 
tensor product construction of 2D wavelet basis uses three basic wavelet families:
ψ(1) (x,y) = φ (x) · ψ (y), ψ(2) (x,y) = ψ (x) · φ (y), ψ(3) (x,y) = ψ (x) · ψ (y), and scaling 
functions φ2 (x,y) = φ (x) · φ (y). It gives the wavelet image decomposition that detects 
isolated edge points rather than curvature of smooth edges. Thus the edges are repre-
sented with a crucially large number of the expansion coefficients (see Fig. 3b).
 More efficient nonlinear image approximation may be constructed with scaled 
basis functions whose support shape can be adapted to the orientation and regularity 
of the object margins. It refers to non-separable wavelet kernels called 2D wavelets 
with anisotropic dilations (m), translations (n) and rotations (θ) of the mother function 
ϕm,n,θ (·,·). The basic concepts of 2D wavelets use adaptive geometry-based approaches 
such as wedgelets (beamlets, platelets etc.), or directional frames such as ridgelets, 
curvelets, contourlets [10]. The benefits of 2D wavelet representation of exemplary 
outline of hypodense area were presented in Fig. 3. 
 The wedgelets are a base of characteristic functions of wedge-shaped sets obtained 
by splitting dyadic squares of entire image partition Q along straight lines [11]. Each 
element of the dyadic partition q ∈ Q is split into at most two wedges: q = w1 ∪ w2 , 
where wi ∈ W, along linearly approximated local edge. The wedgelet approximation

of the image f by �f  is minimizing of the functional H f W f f Wfλ λ, ,� �( ) = − +
2

2
,

where the error decay for f is O(M –2). However, such fast error decay was proved 
for continuous image model with requirement that the number of angles increases 
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for finer scales. In case of digital images, the approximation effectiveness is limited 
and a partition Q along curved segment was suggested.

Fig. 3. The temporary contour of hypodensic area from Fig. 2b – (a) expanded in the wavelet basis 
– (b) and the curvelet basis – (c). The wavelet edge representation consists of large number of different 
scale coefficients with square-shape along the outline, affected by a smooth edge. The curvelet-based 
representation of only a few coefficients with different elongated shapes and in a variety of directions

 following the contour is much more compact

a)                b)            c)

 Curvelets and contourlets are conceptually closer to wavelets. Both provide 
an essentially optimal representation of typical target function f which is C2 (twice 
continuously differentiable) except for discontinuities along C2 curves. The nonlinear 
approximation error obeys

   ε N f O M M2 2 3
( ) log= ⋅( )( )−  (9)

and is optimal in the sense that no other representation can yield a smaller asymptotic 
error with the same number of terms.
 The curvelet transform is a multiscale pyramid corresponding to a family of 
functions with many directions and positions at each length scale, and needle-shaped 
elements at fine scales. This pyramid contains elements with a very high degree of 
directional specificity. In addition, the curvelet transform is based on a certain aniso-
tropic scaling principle which is quite different from the isotropic scaling of wavelets. 
The image approximation uses a fixed system of building blocks and is performed 
by expanding the input in the curvelet frame with the coefficients selection. The 
approximation efficiency critically depends on type of scaling, and sampling of the 
decomposition parameters. 
 First generation curvelets were based on ridgelets, i.e. continuous functions in 
the form of ρm.n,θ (x,y) = m–1/2ψ ((cos(θ) x + sin(θ)y – n)/m. The ridgelet decomposi-
tion is a form of wavelet image analysis in the Radon domain [12]. It solves the 
problem of sparse approximation of smooth objects with straight edges. But for 
finer approximation of curved edges one can use a sufficient fine scale to capture the 
curves as almost straight edges. Thus curvelet transform was based on multiscale 
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ridgelets combined with spatial bandpass filtering operations and subbands split-
ting into blocks. Second generation curvelets are defined directly in via frequency 
partitioning without ridgelets. The digital curvelet image decomposition is based on 
the unequally-spaced fast Fourier transforms or wrapping of the specially selected 
Fourier samples [13].
 Contourlet image transform was initially described in the discrete domain as a 
multiresolution and multidirectional expansion with contour segments derived from 
non-separable, pyramidal directional filter banks [14]. The contourlets-based sparse 
representation for two-dimensional piecewise smooth signals that resemble images 
satisfying the anisotropy scaling relation for curves.

2.5. Estimation and Extraction

In order to avoid the expensive sorting of coefficient magnitudes inherent in nu-
merical implementation of the described nonlinear approximation, thresholding 
strategy may be applied. We can estimate the target function by hard thresholding:
�f a ai i

i
i i

ai

τ
τ

ψ ψ
τ

= =
∈ >
∑ ∑

Λ
 with the threshold value τ. The purpose of thresholding is

keeping only wavelet domain transients coming from the target function. More ge-
ne rally, we have a problem of subtle hypodenstity estimation from the source noisy 
signal s = f + η (with masking content background η). After linear decomposition 

of finite s: s ai
s

i
i

N

=
=
∑ ( )ψ

1

, the target function can be estimated with the well-matched

thresholding function d (⋅):
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A wavelet thresholding is equivalent to estimating the signal by averaging it with 
a kernel that is locally adapted to the signal regularity. For the subtle f estimation, 
semisoft thresholding defined with two thresholds: 
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adaptively selected across the scales was found the most useful. More precisely, 
multiscale and inter-subband context-based adjusting of the threshold reflects a priori 
knowledge of the disease signature forms in the wavelet expansions. The threshold 
depends on an expected significance of the domain local context Ci

L  of L order:
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τi = τ (E{γi}), where τ : [0,1] → R and E{ } ( )

( )

γ γi l
s

a C

a
l

s
i
L

= ( )
∈

∑ . Function γ : R → {0,1}

characterizes the diagnostic significance of neighbor coefficient according to the 
signature model. For the curvelets-based estimation of hypodensic areas, the good 
estimation results were achieved with shrinkage defined basically by 
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for the complex coefficients with magnitudes a s( ) >τ .
The estimated f

∧
 approximately corresponds to the useful f but sometimes signifi-

cantly reduced energy of source signal s may be recovered by enhancement operator

f e f
∧ ∧

= ⎛
⎝⎜

⎞
⎠⎟

. If the enhanced features of f
∧

 reflect diagnostically important characteris-

tics of the extracted signal, e.g. margins of the hypodensic area, more straightforward, 
suggestive and convincing results are achieved. 
 Figure 4 presents examples of the tissue density estimation and hypodensity 
change extraction with a simple enhancement procedure. The local contrast enhance-
ment for the hypodensic area was done in wavelet domain of thresholded coefficients a, 
according to the simple power law rule e a a anorm

p( ) = ⋅ −| | 1  with p ∈ [0.5, 0.8]. A more 
complex procedure of the margin enhancement was based on the following equations 
with parameter m for regulation of the extraction range and p as the extraction power: 
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where k
m anorm norm

p=
− + −

1
1 1( )

.

Moreover, the extracted f
∧

 may be additionally quantized and corrected bas-
ing on the histogram operations in reconstructed image visualization proce-
dure to express sought information distinctly. Expression of the hypodensic 
areas as dark regions in bright background is the example presented in Fig. 5.

2.6. Hypodensity Recovery Methods

Different wavelet basis of 1D and 2D kernels were verified for the effective tissue 
hypodensity estimation. Moreover, methods of useful signal estimation and extrac-
tion discussed in sec. 2.5 were used to optimize suggestiveness of the extracted 
hypodensity regions. An applied criterion was first of all interpretation clarity of 
the estimated region. Next, reliability of the shape and size estimate was taken into 
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account. The resulting effects of the estimated hypodensic region according to the 
different nonlinear approximation procedures were presented in Fig. 5. 
 To sum up, the proposed method of diagnostic information extraction was based 
on the highly nonlinear approximation of subtle hypodense areas in the wavelet 

Fig. 4. Approximations of tissue density: (a) averaged tendency of the signal profile from Fig. 2a (after 
Gaussian filtering), (b) the estimated tissue density after the nonlinear approximation with the adaptive 
thresholding across scales, (c) extraction of hypodenstity by the power law enhancement, (d) extrac-
tion of ‘hypodensity hole’ by the margin enhancement; HU – Hounsfield units of brain tissue form CT

image; pixels – successive pixels of the selected column of the image

Fig. 5. The estimated hypodense area by highly nonlinear approximation of the source  image (left) 
according to 4 different methods with enhanced visualization contrast, successively as follows:
(a) the wavelet basis of 1D sharp functions with denoising and margins enhancement (by non-perfect
reconstruction [15]), (b) the curvelet basis with shrinkage, (c) the curvelet-based denoising by
shrinkage with 1D wavelet-based margins enhancement, (d) 1D wavelet-based denoising and margins

enhancement followed by the curvelet-based smoothing of lesion outlines

       a)     b)    c)  d)
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domain. In order to reveal a unrecognized disease expression from the CT scans to 
confirm ischemia brain damage, the estimation of hidden presence of the pathology 
signatures in the respective cerebrum structures can be realized according to the 
following fundamental procedures:
 a) initial stage of the image conditioning with de-skulling to define the soft brain 
tissue region (review of applicable methods is out of this paper); 
 b) denoising (or smoothing) procedure based on the nonlinear approximation to 
extract smooth signal of the local tissue density; the adaptive thresholding in smooth 
wavelet and second generation curvelet bases are useful to estimate the curvature of 
hypodensic area margins; the methods should be adjusted to the characteristics of 
CT scan noise;
 c) multiscale image representation in the best wavelet basis; the wavelets with 
moderate smoothness and short compact support (i.e. the sharp wavelets) adjusted 
to the hypodensity characteristics are preferable because of the desired packed rep-
resentation of singularities;
 d) segmentation of the stroke-susceptible regions (SSR) of the brain tissue by 
analysis of the wavelet local maxima distributed in the hierarchical tree across scales 
(i.e. the packed representatives of signal singularities) – out of this paper; 
 e) enhancement of the margins in SSR based on preferable 2D regular wavelets 
representation and a priori diagnostic knowledge according to the nonlinear extrac-
tion rules;
 f) additional histogram-based extraction, brightness level quantization, forming 
and visualization of diagnostic information that was based on the enhanced spatial 
hypodensity distribution – deeper analysis is out of this paper.
 Generally, because of flexibility and design susceptibility of 1D wavelet 
basis, denoising and margins enhancement seem to be more effective with such 
approximants. However, complementary  procedure of reconstructed curve out-
line smoothing with 2D wavelet kernels gives more useful for more reliable and 
natural hypodensic area extraction (see the examples in Fig. 5). The examples of 
the clear ischemia approximation in the successive scales of wavelet representa-
tion and the effective extraction of invisible signs of hypodensity were presented 
in Fig. 6.

3. Experimental Verification

Subtle hypodense signs extraction was verified for over one hundred cases of stroke. 
Various signs of disease different in form, intensity, size etc. can be monitored, ana-
lyzed, estimated and extracted in the wavelet domain. The procedure of nonlinear 
approximation reduces redundancy of the diagnostic content representation, makes 
the fundamental tissue features characteristics easier, more suggestive and informa-
tive. The experiments were concentrated on:
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 a) straightforward and clear extraction of hypodense areas in the reconstructed 
images (Fig. 7) – test set consisted of 25 ischemic stroke cases of the patients aged 
28–89 (mean 69 years); test results were a consensus of 3 experts in image processing, 
engaged in computer-aided ischemic stroke diagnosis for more than 3 years; only dif-
ficult ‘silent’ acute examinations (on average 3 hours after stroke onset) were used;
 b) diagnostic improvement in clinical practice by using extracted images 
as additional information of interpretation procedure - test set consisted of 125 
ischemic stroke cases of the patients aged 24–92 (mean 70 years); test results were 
the effect of stroke detection in clinical conditions by 4 experts in radiology; 104 
cases of acute stroke (on average 4.7 hours after stroke onset) and 21 normal cases 
were used.

 First experiment was designed to verify possibility of making invisible cases of 
acute stroke -clearly and undoubtedly visible. Straightforward and clear extraction 
of the hypodense areas was achieved for 50% of the CT layers with the difficult 
‘silent’ acute stroke cases. Such extraction effectiveness appeared sufficient enough 
for significant improvement of acute ischemia perceptibility. 
 Average diagnosis sensitivity and specificity for the observers over test set of 
125 examinations increased by 20% (from 0.409 up to 0.489) and 5% (from 0.774 
up to 0.812), respectively. It seems to be important increase of clinical diagnosis 
performance.

a) 

b) 

Fig. 6. Wavelet-based approximation of hypodense changes: (a) (from left to right) part of the source 
image with selected hypodense area and four approximations in the successive scales (from coarse to 
fine); (b) (from left to right) −‘silent’ case of invisible symptoms − visible hypodensity signs in two 
coarse approximations in the coarse wavelet and the curvelet scales, respectively − ischemic areas

extracted in the reconstructed image − follow-up CT (right) with the visible ischemic changes
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4. Conclusions

The presented pathology extraction methods based on the nonlinear approximation 
in the wavelet bases are effective and flexible enough to model masked tissue density 
and extract subtle, diagnostically important hypodense changes of acute ischemic 
stroke. The reported results indicate possible improvement of the diagnostic output 
for really challenging problem of the possible earliest CT-based ischemic stroke 
diagnosis. Further research will include the wavelet-based fully automatic detection of 
the infarct to complement the computer assistance. Moreover, more exhaustive clinical 
verification of the proposed methods is planned. 

a) 

b) 

c) 

Fig. 7. Examples of the extracted hypodensity: (a) early CT scans of different patients with hidden 
signatures of ischemia; (b) processed early scans (from (a) raw) with the extracted hypodense chan-
ges in dark; c) follow-up CT or MR stroke confirmation for each stroke patient with indicated regions

of irreversible ischemia



40 A. Przelaskowski, G. Ostrek, K. Sklinda

Acknowledgment

Research supported by a scientific (2007–2009) N518 042 32/3301 grant from Ministry of Science and 
Higher Education, Poland.

References

 1. Donoho D.L., Vetterli M., DeVore R.A., Daubechies I.: Data compression and harmonic analysis. 
IEEE Trans. Inform. Theory, Special Issue, Inform. Theory: 1948–1998 Commemorative Issue 1998, 
44, 6, 2435–2476.

 2. von Kummer R.: The impact of CT on acute stroke treatment, in: P. Lyden (Ed.), Thrombolytic 
Therapy for Stroke, Humana Press, New Jersey, USA, 2005, 249-278.

 3. Bendszus M., Urbach H., Meyer B., Schultheiss R., Solymosi L.: Improved CT diagnosis of acute 
middle cerebral artery territory infarcts with density-difference analysis. Neuroradiology 1997, 39, 
2, 127–131.

 4. DeVore R.A.: Nonlinear approximation. Acta Numerica 1998, 7, 51–150.
 5. Capobianco Guido R., Pereira J.C. (guest editors): Wavelet-based algorithms for medical problems. 

Special issue of Computers in Biology and Medicine 2007, 37, 4.
 6. Daubechies I.: Ten lectures on wavelets. SIAM 1995.
 7. Mallat S.: A wavelet tour of signal processing, chapter IX. Second Edition. Academic Press 1999.
 8. Adams R.A., Fournier J.J.: Sobolev Spaces. Academic Press 2003.
 9. Frazier M., Jawerth B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 1985, 34, 

777–789.
10. Welland, G.V. (Ed.): Beyond Wavelets. Studies in Computational Mathematics 10, Academic Press 

2003.
11. Donoho D.L.: Wedgelets: nearly-minimax estimation of edges. Tech. Retort, Statist. Depart., Stanford 

University 1997.
12. Starck J.-L., Candès E.J., Donoho D.L.: The curvelet transform for image denoising. IEEE Tran. 

Image Proc. 2002, 11, 6, 670–684.
13. Candes E.J., Demanet L., Donoho D.L., Ying L.: Fast discrete curvelet transforms. Technical Report, 

Cal. Tech. 2005.
14. Do M.N., Vetterli M.: Contourlets. In: Beyond Wavelets, G. V. Welland, (Ed.) New York: Academic 

Press 2003.
15. Przelaskowski A., Bargieł P., Sklinda K., Zwierzynska E.: Ischemic stroke modeling: multiscale 

extraction of hypodense signs. Proc 11th Int Conf Rough Sets, Fuzzy Sets, Data Mining and Granular 
Computing, LNCS 4482, 171–181, 2007.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




