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Clustering and Spatial Variation in Risk
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Motivated by recent interest in the possible spatial clustering of rare diseases, the pa-
per presents two approaches to the assessment of spatial clustering. The first approach 
emphasizes estimation of the nature and physical scale of the clustering effects rather 
than testing for their existence. The second approach presents a scan statistic that can 
detect irregular shaped clusters within relatively small neighborhoods of each region. A 
Monte Carlo test of significance is given and the performance is examined in comparison 
with that of the Kulldorff’s circular spatial scan statistic. An application to data on the 
spatial distribution of childhood leukemia and lymphoma in Nord Pas de Calais region 
(France) is described.

K e y w o r d s: spatial clustering, childhood leukemia, scan statistics, K-functions, complete 
spatial randomness, scan statistic, Monte Carlo method

1. Introduction

The question of whether disease cases are clustered in space has received consider-
able attention in the literature, in part prompted by increasing concerns over possible 
links between disease and source of environmental pollution (see, for example,
[1, 2, 3] and [4]). In this paper we present two approaches to the assessment of spatial 
clustering based on:
 � the K-functions for labeled point processes which quantify the departures from 
the hypothesis that in a realization of a stationary spatial point process consisting of 
events of two qualitatively different types, the disease cases are a random sample 
from the superposition of disease and healthy events;
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 � The flexibly shaped spatial scan statistic which test the statistical significance 
of the hypothesis that the observed and the expected number of cases in each region 
of the study area are equal.
 The first approach estimates the second-moment properties of a labeled point 
process and the spatial clustering is assessed indirectly through the nature and physi-
cal scale of the possible clusters. The second approach detects the irregular shaped 
clusters by testing the null hypothesis on concentric C circles plus all the sets of 
connected regions (including the single current region) whose centroids are located 
within the C-th largest concentric circle.
 The above techniques are applied to detect clusters of childhood leukemia and 
lymphoma in Nord-Pas-de-Calais region (France). The conclusion is that the methods 
are complementary and work well for small to moderate number of events and cluster 
sizes. For larger numbers of events and cluster sizes the methods are not feasible and 
more efficient algorithms are needed.

2. The Methods

2.1. K-Functions for Labeled Point Processes

Let xi, i = 1,...,n1 denote the locations of all cases of disease in a geographical region 
A. A traditional starting point for the analysis of such data is to test the hypothesis of 
complete spatial randomness (CSR), whereby the xi constitutes a partial realization 
of a homogeneous planar Poisson process (see, for example, [5]).
 In an epidemiological setting, the hypothesis of CSR is implausible because of 
natural spatial variation in population density. A more plausible starting point is to 
assume an inhomogeneous Poisson process with spatially varying density λ(x). In 
[6] is proposed to select a random sample of controls xi, i = n1 + 1,...,n1 + n2 from 
the population at risk in A to avoid the difficulties in formulating an appropriate 
parametric form for λ(x). Under the Poisson assumption, the cases then represent 
a random sample from the superposition of cases and controls. We identify this ran-
dom labeling hypothesis H0

K as the null hypothesis of no spatial clustering. We wish 
to test H0

K and to quantify departures from H0
K.

 Note that H0
K makes no explicit reference to an underlying Poisson process 

of cases or controls. Subsequently we shall assume that the superposition of 
cases and controls constitutes a partial realization of a stationary spatial point 
process. 
 Our description of the so-called K-function approach in the spatial epidemio-
logical context follows that given in [7]. For an unlabeled stationary, isotropic 
point process of events the reduced second moment measure or the K-function is 
defined by

K(s) = λ–1E [number of further events within distance s from an arbitrary event]
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where λ is the intensity, or mean number of events per unit area. This definition of 
K(s) requires an additional technical conditions which essentially preclude multiple 
coincident events.
 For a labeled stationary, isotropic point process, in which the events are of 
qualitatively different types j = 1, 2 (here, cases and controls), we similarly define 
a set of K-functions

Kij(s) = λj
–1E [number of type j events within distance s from an arbitrary type i event]

where λj is the intensity of type j events. 
 Under the random labeling hypothesis, the process of type j events constitutes 
a random thinning of the unlabeled point process defined as the superposition of type 
1 and type 2 events. Also, it is clear from the above definitions that the K-functions 
are invariant under random thinning. It follows that under H0

K,

K11(s) = K22(s) = K12(s) = K21(s)

for all s. Note that the above equality does not require any parametric assumptions 
about the underlying unlabeled process.
 The above equality suggests that a useful way of investigating departures from 
H0

K would be to assess the significance of differences amongst estimates of the three 
functions Kij(s). In particular, the difference D(s) = K11(s) – K22(s) may be taken as 
a measure of the extra-clustering of the cases compared to the clustering of the 
controls. Thus, in the present context, significantly positive values of D(s) would 
constitute evidence of spatial clustering of the disease in question.
 For data xi ∈ A, i = 1,...,n where n = n1 + n2 with the first n1 events of type 1 and 
the remainder of type 2, unbiased estimators for the Kij can be obtained as follows. 
Let w(x, s) be the reciprocal of the proportion of the circumference of the circle with 
centre x and radius s which lies within A. Let dij = ||xi – xj|| be the Euclidean distance 
between xi and xj. Let δij(s) be the indicator of the event dij ≤ s. Put wij = w(xi,dij) for 
j ≠ i and wii = 0, then

    

In order to yield unbiased estimators of D(s) under H0
K the above expressions differ 

slightly from the usual definitions of Kij. Note also that, for a convex region A, the 
estimators are unbiased only for s less than the circumradius of A, this restriction 
guarantees that the wij are all finite.
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We are interested in the sampling distribution of the empirical function D̂ (s) = 
= K̂11(s) – K̂22(s). In [7] there is derived the mean and covariance structure of K̂ij(s) 
under random labeling, from which it is a straightforward exercise to deduce the 
mean and variance of D̂ (s).
 In practice, the statistic D̂ (s) is calculated for a range of values s1,..., sm. A plot 
of D̂ (s) versus s (with tolerance limits under random labeling imposed) is useful for 
assessing at which distances departures from random labeling are seen. Care must 
be taken when such plots are interpreted since D̂ (s1) and D̂ (s2) for s1 ≠ s2 are not 
independent. The range of distance to be examined is also, to some extent, arbitrary 
and likely to be important in the overall significance of D. 
 If a formal test of significance is required, we need somehow to combine the 
information from the m values D̂ (sk) into an appropriate test statistic, noted with D. 
Given a particular choice for D, we can implement an exact, albeit computationally 
intensive, Monte Carlo test. The Monte Carlo test consists of ranking the observed 
value D1 of D amongst values D2,...,Dr obtained from r – 1 independent random 
permutations of the labels. If D1 ranks kth largest, the exact p-value is k/r (see [8]).
One sensible choice of test statistic is

   .

The approximate sampling distribution of D under H0
K is normal, with E[D] = 0 and

 (see [7]).

 Using the Monte Carlo test we verify the statistical significance of the null 
hypothesis H0

K : D = 0 (no spatial clustering or inhibition) against the alternatives
HA

K : D > 0 (spatial clustering) or HK
A′ : D < 0 (spatial inhibition). In this paper, the 

P-value of the test is computed ranking r = 19 (i.e. a significance of 95%) Monte 
Carlo replications of D generated under the null hypothesis.′

2.2. The Flexibly Shaped Spatial Scan Statistic

Consider the situation where an entire study area A is divided into R regions (for ex-
ample, county, enumeration districts, et cetera). The number of cases in the region i is 
denoted by the random variable Ni with observed value ni, i = 1,..., R. Under the null 
hypothesis H0

S of no clustering the Ni are independent Poisson variables such that

   H0
S : E[Ni] = ξi,  Ni ~ Po(ξi),  i = 1,..., R 

where Po(e) denotes Poisson distribution with mean e and the ξi are the null expected 
number of cases in the region i. To specify the geographical position of each region, 
we will use the coordinates of the administrative population centroids.
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 Under this situation, the circular spatial scan statistic imposes a circular window 
Z on each centroid. For any of those centroids the radius of the circle varies from 
zero to a pre-set maximum distance d or a pre-set maximum number of regions C to 
be included in the cluster. If the window contains the centroid of a region, then that 
whole region is included in the window. In total, a very large number of different but 
overlapping circular windows are created, each with a different location and size, 
and each being a potential cluster. Let Zik , k = 1,..., C denote the window composed 
of the (k–1)-nearest neighbors to region i. Then all the windows to be scanned by 
the circular spatial scan statistic are included in the set

   Z1 = {Zik  |1 ≤ i ≤ R, 1 ≤ k ≤ C}. 

The flexibly shaped spatial scan statistic (‘flexscan’ called hereafter) proposed 
in [9] imposes an irregularly shaped window Z on each region by connecting its 
adjacent regions. For any given region i the flexscan create the set of irregularly 
shaped windows with length k consisting of k connected regions including i and 
let k varying from 1 to the pre-set maximum C. In total, as in the circular spatial 
scan statistic, a very large number of different but overlapping arbitrarily shaped 
windows are  created. Let Zik(j) , j = 1,..., jik denote the j-th window which is a set of 
k regions connected starting from the region i, where jik is the number of j satisfy-
ing Zik(j) ⊆ Zik for k = 1,...,C. Then all the windows to be scanned are included in 
the set

   Z2 = {Zik(j)  |1 ≤ i ≤ R, 1 ≤ k ≤ C, 1 ≤ j ≤ jik}. 

In other words, for any given region i the circular spatial scan statistic consider C 
concentric circles, whereas the flexscan consider C concentric circles plus all the 
sets of connected regions (including the single region i) whose centroids are located 
within the C-th largest concentric circle. So, the size of Z2 is far larger than that of 
Z1 which is at most RC. 
 Under the alternative hypothesis, there is at least one window Z for which the 
underlying risk is higher inside the window when compared with outside. In other 
words, we are considering the following hypothesis:

   H0
S : E[N(Z)] = ξ(Z),  for all Z, 

   HA
S : E[N(Z)] > ξ(Z),  for some Z 

where N(•) and ξ(•) denote the random number of cases and the null expected number 
of cases within the specified window, respectively. For each window it is possible to 
compute the likelihood to observe the observed number of cases within and outside 
the window, respectively. Under the Poisson assumption, the test statistic, which was 
constructed with the likelihood ratio test (see [10]), is given by
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where ZC indicates all the regions outside the window Z, n() denotes the observed number 
of cases within the specified window and I() is the indicator function. The window Z* 
that attains the maximum likelihood is defined as the most likely cluster (MLC). 
 To find the distribution of the test statistic under the null hypothesis, the Monte 
Carlo hypothesis testing is required. In this paper, p-value of the test is based upon 
the null distribution of the statistic of the likelihood ratio test with a large number 
(we used 999) of the Monte Carlo replications of the data set generated under the 
null hypothesis. It should be noted that in the same manner as the circular spatial 
scan statistic the flexscan is also able to locate secondary clusters that do not overlap 
the most likely cluster but are still statistically significant.

3. Case Study: Childhood Leukemia in Nord-Pas-de-Calais

We used the above techniques in order to detect clusters of childhood (ages up to 15 
years) acute leukemia cases in Nord Pas de Calais (NPC) region diagnosed in the 3 
year period ending in 2003. 
 In this paper we consider the ‘canton’ division of the NPC area; there are, in total, 
156 cantons. In the considered period, in 123 cantons, with a surface of 9,609 km2, 
are distributed, 497 cases of acute childhood leukemia among a population of 573,500 
children (data are provided by D.I.M. de C.H.R.U.-Lille). Hence, the mean intensity 
of the type 1 events (i.e. disease cases) is λ1 = 0.0517 and the mean intensity of the 
type 2 events (i.e. healthy cases) is λ2 = 59.6836. The resulting data are shown in 
Fig. 1. 
 In this study to specify the geographical position of each canton we have used 
the coordinates (obtained from Google Earth) of its main town (i.e. chef-lieu). In the 
NPC region we find out only 96 distinct chef-lieu for the 123 cantons with cases of 
acute childhood leukemia (because a town can be chef-lieu for more than one canton). 
Hence, for our purpose we consider only 96 sub-regions (some of them obtained by 
merging together the cantons with the same chef-lieu).
 In order to apply the K-function method we generate for each of the 96 sub-
regions:
 – the spatial coordinates of all disease-cases of the sub-region;
 – the spatial coordinates of a number of healthy-cases of the sub-region. 
 The total number of control-cases (i.e. healthy-cases) is 1,494; this drastic low 
number was chosen from computer-implementation consideration of the method. For 
each sub-region the number of control-cases is proportional to the healthy population.
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 The spatial coordinates of an event, disease-case or healthy-case, are gener-
ated using a bivariate Gaussian distribution function with mean the geographical 
coordinates of the chef-lieu of the current sub-region and with variance-covariance 
matrix given by σi

2I (where I is the 2x2 identity matrix and σi is the radius/3 of the 
circle having the surface of the current sub-region i). The resulting data are given in 
Fig. 2. 

Fig. 2. Generated locations of 497 cases (+) and 1,494 controls (•) for childhood leukemia in Nord Pas 
de Calais for the period 2001–2003 (the ‘o’ are the locations of the chef-lieu of the 96 sub-regions).

The units of the axes are in [km]
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Table 1. The results of the Monte-Carlo tests of significance

The null hypothesis of no spatial inhibition is accepted

the statistic
12.62233

the exact p-value
0.90

The null hypothesis of no spatial clustering is accepted

the statistic
12.62233

the exact p-value
0.90
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 Figure 3 shows D̂ (s) for the point labeled data of Fig. 2 evaluated at sk = 2,4,...,20

together with approximate 95% tolerance limits . The diagram sug-
gests mild evidence of the spatial clustering. 
 The results of a formal Monte Carlo test of significance with r = 19 (i.e. a sig-
nificance of 95%) random replications of D generated under the null hypothesis are 
listed in Table 1. Clearly, retrospective adjustment of m could give a more or less 
significant result, but we feel that this would enrich insignificantly the information 
conveyed by Fig. 3. 

Fig. 3. K-function plot of D̂ (s) and approximate 95% tolerance limits for D(s) = 0 (–.–). The units
of the axes are in [Km]

 The above numerical and graphical results are obtained in 16,800 sec. (≈ 4.66 h) 
using original subroutines written in Matlab 7.0 implemented on an IBM ThinkPad 
R40 equipped with an Intel Pentium M Processor 1.4GHz and 1Gb RAM. 
 The results obtained applying the flexscan and the Kulldorff’s scan to the same 
data are synthesized comparatively in Table 2 and Fig. 4.
 When the limit length of clusters is set to 20 then the flexscan method finds the 
<<ARDRES, CALAIS, FAUQUEMBERGUES, LUMBRES>> cluster to be the most 
likely cluster with a p-value of 0.019 and the <<TOURCOING>> and <<LIEVIEN>> 
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Fig. 4. The map of the 96 sub-regions the Nord-Pas de Calais region with the most likely leukemia
clusters detected by flex-scan (the upper map) and Kulldorff scan (the lowert map)
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clusters to be secondary clusters with p-values 0.037 and 0.051, respectively. An 
other result of the limit length change is the dramatic increase of the total running 
time from 17s to 541s (the growing factor is 31.82).
 In the case of Kulldorff method the change of the limit length of clusters from 
15 to 20 doesn’t change the ranking of the clusters nor the total running time.
 All the results regarding the flexible spatial scan by data length are obtained us-
ing the FleXScan ver.1.1.2 software implemented on the same laptop as the above 
Matlab subroutines.

4. Conclusions

In this paper we described two methods for the detection of clustering. Certain points 
are worth stressing. 

Table 2. The most likely leukemia clusters detected by flex-scan and Kulldorff scan in the Nord-Pas
 de Calais region

Scanning method        : Flex-scan
Limit length of cluster: 15

Scanning method        : Kulldorff’s method
Limit length of cluster: 15

MOST LIKELY CLUSTER

TOURCOING
Population ................: 14800.0
Number of cases ......: 32 (12.82 expected)
Overall relative risk .: 2.49497
Log likelihood ratio ..: 10.4674
P-value ......................: 0.014

SECONDARY CLUSTERS

ARDRES, CALAIS,
FAUQUEMBERGUES, LUMBRES
Population ................: 16500.0
Number of cases ......: 34 (14.299 expected)
Overall relative risk .: 2.37778
Log likelihood ratio .: 10.1564
P-value .....................: 0.015

LIEVIN

Population ................: 3200.0
Number of cases ......: 13 (2.773 expected)
Overall relative risk .: 4.68781
Log likelihood ratio .: 9.96426
P-value .....................: 0.016

MOST LIKELY CLUSTER

TOURCOING
Population ................: 14800.0
Number of cases ......: 32 (12.82 expected)
Overall relative risk .: 2.49497
Log likelihood ratio ..: 10.4674
P-value ......................: 0.002

SECONDARY CLUSTERS

LIEVIN

Population ...............: 3200.0
Number of cases ......: 13 (2.773 expected)
Overall relative risk .: 4.68781
Log likelihood ratio ..: 9.96426
P-value ......................: 0.002

FAUQUEMBERGUES, FRUGES,
LUMBRES
Population ...............: 7700.0
Number of cases ......: 17 (6.672 expected)
Overall relative risk .: 2.54762
Log likelihood ratio .: 5.68015
P-value .....................: 0.105
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 For point (case-control) data (i.e. the K-function method), matched cases and 
controls may be available but great care must be taken when point-based methods are 
utilized since, in general, the basic method for unmatched data will not be directly 
applicable and some adjustment of the procedure will be required. We view the K-
function method as useful initial tool for the data exploration. However, the statistical 
properties make the interpretation difficult. A great care must be paid to presentation 
and interpretation of results to avoid unnecessary and unwarranted alarm among the 
local residents.
 For the flexscan method it should be noted that the power estimate reflects the 
power to reject the null hypothesis for whatever reason and that the probability of 
both rejecting the null hypothesis and detecting the true cluster correctly is a different 
matter.
 The conclusion is that the methods are complementary and work well for small 
to moderate number events and cluster sizes, respectively. For larger numbers of 
events and cluster sizes the methods are practically not feasible and more efficient 
algorithms are needed.

References

 1. Marshall R.J.: A review of the statistical analysis of spatial patterns of disease. Journal of Royal 
Statistical Society 1991, Series A, 154, 421–441.

 2. Lawson A., Bigger A., Böhning D., Lesaffre E., Viel J. F., Bertollini R. (Eds): Disease Mapping and 
Risk Assessment for Public Health. John Wiley & Sons, London 1999.

 3. Elliot P., Wakefield J., Best N., Briggs D. (Eds.): Spatial Epidemiology, Methods and Applications, 
Oxford Univ. Press, 2000. 

 4. Waller L.A., Gotway C. A.: Applied Spatial Statistics for Public Health Data, John Wiley & Sons, 
New York 2004. 

 5. Ripley B. D.: Spatial Statistics. Wiley, New York 1981. 
 6. Cuzick J., Edwards R.: Spatial clustering for inhomogeneous populations (with Discussion). Journal 

of the Royal Statistical Society 1990, Series B, 52, 73–104.
 7. Diggle P. J., Chetwynd A. G.: Second-Order Analysis of Spatial Clustering for Inhomogeneous 

Populations. Biometrics 1991, 47, 1155–1163.
 8. Besag J., Diggle P. J.: Simple Monte Carlo tests for spatial patterns. Applied Statistics 1977, 26, 

327–333.
 9. Tango T., Takahashi K.: A flexibly shaped spatial scan statistic for detecting cluster. Inert. J. of Health 

Geographics 2005, 4, 11, [Open Access], http://www.ij-healthgeographics .com/.
10. Kulldorff M.: A spatial scan statistic. Communications in Statistics, 1997, 26, 1481–1496. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


