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Chapter 1

Summary

1.1 English summary

Despite great advances in cancer therapies over the past decades, treatment resis-
tance remains a significant challenge. It can manifest as intrinsic resistance, where
patients do not respond to certain therapies at all, or as acquired resistance, which
develops over the course of the treatment. Identifying the contributors to this re-
sistance could improve existing therapies, propose promising combination therapy
approaches, and possibly even bring about new treatment ideas. Therefore, further
investigation of the causes underlying treatment failure is crucial to the improve-
ment of oncology patients’ lives.

The tumor microenvironment (TME) harbors some of the putative factors driv-
ing treatment resistance. It encompasses the tumor itself and its neighborhood. The
TME comprises cancer cells (CC), cancer stem cells (CSC), blood vessels, immune
cells, stromal cells, and the extracellular matrix. Importantly, the different parts of
the TME are interconnected, creating a complex and heterogeneous network of al-
leged drug resistance factors, which is not yet fully explored. This offers an exciting
opportunity for computational and mathematical modeling, which can capture the
intricacies of the TME and aid in identifying or validating resistance drivers and
combination therapy targets to improve treatment response rates.

Hence, the aim of this doctoral thesis was to use mathematical and computa-
tional modeling to explore the heterogeneity of the tumor microenvironment as a
contributor to treatment resistance and source of potential combination therapy tar-
gets. In particular, I focused on two parts of the TME: the acidic niche and the stem
cell population. First, I investigated tumoral expression of the pH-regulatory en-
zyme CAIX as a biomarker for immune checkpoint inhibitor therapy (ICI) and a po-
tential combination therapy target. Then, I studied cellular plasticity, i.e. the ability
of cancer cells to acquire and lose stemness properties, as a resistance factor for ra-
diotherapy. The results of these investigations have been published in three scientific
publications, which form the basis of this thesis. These publications are presented
in chapters 3-5 of this thesis, each preceded by a short introduction summarizing
the publication, highlighting my contributions, and delineating the relationship be-
tween the publications and the research goals and hypotheses stated in this thesis.
Additionally, the thesis contains an introduction chapter, which provides some back-
ground on the investigated biological problems, reviews relevant literature, and ex-
plains the importance of the research topics. This is followed by a chapter consisting
of the list of research aims I have set for this thesis and the corresponding research
hypotheses. Finally, the thesis concludes with a discussion chapter summarizing
the most important results and conclusions, reiterating how the research aims have
been achieved, elaborating on the studies’ limitations, and pointing to some promis-
ing future research perspectives.
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1.1.1 Chapter 1: Introduction

This chapter is an introduction to the research topic. It explains the significance of
studying drivers of treatment resistance, enumerates known factors of resistance,
and proposes the TME as a potential source of treatment resistance factors for im-
mune checkpoint inhibitor therapy (in particular anti-PD-1 and anti-CTLA-4 ther-
apy) and radiotherapy (both conventional photon radiotherapy and proton beam
therapy). This chapter consists of two sections. The first gives the necessary bio-
logical background: it explains the mechanism of action of the studied treatments,
elaborates on the importance of improving their response rates, provides the state of
the art in the study of their treatment resistance drivers, and introduces the putative
resistance factors that I am investigating in this thesis. The second section gives an
outline of mathematical and computational models of radio- and immunotherapy
found in the literature, focusing on models that helped clarify causes of treatment
resistance.

1.1.2 Chapter 2: Research Aims and Hypotheses

The second chapter enumerates the detailed research aims of this thesis, together
with the postulated research hypotheses. The following three chapters are each de-
voted to one of the publications, which form the basis of the thesis, and their con-
nection with the aforementioned research aims and hypotheses.

1.1.3 Chapter 3: An in silico model to study the impact of carbonic anhy-
drase IX expression on tumor growth and anti-PD-1 therapy

This chapter corresponds to the publication by the same title, of which I am the first
and main author and which was published in the Journal of the Royal Society Interface
in January 2023. Here, I proposed a computational model of the tumor and its mi-
croenvironment, in order to investigate the relatively low response rate to immune
checkpoint inhibitors and to study CAIX expression as a biomarker and potential
combination therapy target for anti-PD-1 therapy. This hybrid model consists of an
agent-based part (ABM), which simulates the behavior of cancer and immune cells,
and a partial-differential equation model describing substance gradients in the TME.
The choice of such a model type was motivated by the fact, that ABMs intrinsically
capture heterogeneity and stochasticity of the simulated environment, fitting the aim
of the exploration of the heterogeneous TME. Furthermore, they are known to pro-
duce emergent phenomena, making them a perfect candidate for identifying poten-
tial biomarkers and exploring research hypotheses. The proposed model can serve
as a high-throughput tool to identify biomarkers for immunotherapy and explore
combination therapy approaches, in line with my first research aim. In my thesis, I
used it to qualitatively reproduce findings from in vivo experiments on the influence
of CAIX on the TME, visualize the impact of CAIX expression on the TME and im-
mune response, and analyze its influence on anti-PD-1 effectiveness in tumors with
and without pre-treatment PD-L1 expression. The in silico simulations suggest that
low PD-L1 expression prior to CAIX inhibition should not disqualify patients from
receiving combination therapy with anti-CAIX and anti-PD-1, contributing to the
explanation of conflicting findings in studies of PD-L1 as an ICI biomarker and cor-
roborating the use of dynamic PD-L1 expression instead. Furthermore, the findings
propose CAIX as a putative ICI biomarker and combination therapy target, in line
with my second research aim.
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1.1.4 Chapter 4: Carbonic anhydrase IX suppression shifts partial response
to checkpoint inhibitors into complete tumor eradication: model-
based investigation

In this chapter, I introduce an ordinary differential equation model which I build
to supplement the agent-based model presented in the previous chapter. It cor-
responds to the publication "Carbonic anhydrase IX suppression shifts partial re-
sponse to checkpoint inhibitors into complete tumor eradication: model-based in-
vestigation", of which I am the first and main author and which was published in
the International Journal of Molecular Sciences in June 2023. This continuous model
is informed by the qualitative results obtained from the ABM simulations. How-
ever, thanks to its lower complexity this model allowed for calibration with in vivo
data, quantitative simulations, mathematical analysis, and thus further validation
of the previous findings and hypotheses. In this publication, I first studied a sim-
plified yet realistic version of the proposed ordinary differential equation (ODE)
model, which allowed for qualitative phase portrait analysis. This analysis, sup-
plemented with numerical simulations, implied that CAIX suppression combined
with an abundant immune response (e.g. induced by ICI) could shift the asymptotic
behavior of the model from a stable tumor toward tumor eradication, supporting the
conclusions derived from the ABM that CAIX suppression improves ICI responses.
Motivated by these results obtained from the simplified model, I used the full con-
tinuous model to compare various combination therapies: anti-PD-1 and anti-CAIX,
anti-CTLA-4 and anti-CAIX, anti-PD-1 and anti-CTLA-4, and finally the triple com-
bination of both ICIs and anti-CAIX. In particular, I simulated transient treatment
with various dosages, to reproduce the fact that therapies are not given indefinitely
to patients. The in silico simulations suggest that monotherapies lead to tumor re-
lapse, even after an initial response, whereas anti-CAIX combined with a sufficient
ICI dose leads to a durable and complete response. These results and conclusions
additionally contribute to the fulfillment of my second research aim. Furthermore,
simulations indicate that anti-CAIX reduces the fraction of cancer stem cells, making
it a combination therapy target for treatments that struggle with stem cell removal,
such as chemotherapy.

1.1.5 Chapter 5: Cellular plasticity upon proton irradiation determines
tumor cell radiosensitivity

The final results chapter was devoted to my contribution to the publication "Cellu-
lar plasticity upon proton irradiation determines tumor cell radiosensitivity", which
was published in Cell Reports in February 2022. This publication was the result of
an international collaboration led by dr. Claudia Peitzsch from the National Centre
for Tumor Diseases in Dresden, Germany. I am the third author of this publica-
tion, however, my contribution constitutes an independent part of the study, i.e. the
conceptualization, development and analysis of the ordinary differential equation
model of cellular plasticity. The overall aim of this study was to study the impact of
the more traditional X-ray and the less conventional proton radiotherapy on tumor
heterogeneity, in particular on cancer stem cell (CSC) dynamics. identification of
treatments with superior CSC targeting capabilities is of utmost importnce, as CSC
removal is believed to be key to long-term tumor control after radiotherapy. The in
vitro experiments performed by the research group were only able to capture the end
effect of each irradiation type on the CSC population. Hence, I saw an opportunity
for mathematical modeling, which could dive deeper and help identify the role of
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plasticity events in the observed CSC dynamics. Therefore, I built an ordinary dif-
ferential equation model of CC and CSC and their cellular plasticity. I calibrated the
model with in vitro data and data found in literature and fitted it to the experimental
observations. The model was not only able to represent experimental findings, but
also underlined the importance of two types of plasticity events: regular plasticity
events where CC acquire stemness, and reverse plasticity events, where CSC lose
their stemness. In particular, I showed analytically, that both types of events had to
be included in the model to represent a qualitative trend found in the experimental
data. Furthermore, data fitting revealed a significantly lower rate of plasticity events
after proton than photon irradiation, which could partially explain the higher ther-
apeutic potential of proton therapy. In conclusion, bi-directional cellular plasticity
seems to be crucial to explaining the CSC dynamics after irradiation and targeting it
could reduce recurrence rates after radiotherapy. My contribution to this publication
is in line with my third research aim.

1.1.6 Chapter 6: Discussion

The discussion chapter summarizes the most important conclusions obtained in this
thesis while pointing out the limitations of the studies and proposing further re-
search perspectives. In this thesis, I have identified CAIX expression and cancer
cell plasticity as putative resistance mechanisms to ICIs and radiotherapy. However,
while the mathematical analyses and in silico simulations are promising, these find-
ings should be further validated in vitro and in vivo. During my research, I have also
identified interesting avenues for further research, including the interplay between
CAIX expression, stroma accumulation and ICI effectiveness, and the impact of ICIs
on CSC dynamics. They were out of scope for this thesis, but constitute future per-
spectives worth further investigation.

In conclusion, this thesis fulfills all three research aims stated in its second chap-
ter, and the obtained results and conclusions support my research hypotheses.

1.2 Streszczenie w języku polskim

Mimo ogromnych postępów w dziedzinie terapii przeciwnowotworowych poczy-
nionych w ciągu ostatnich dziesięcioleci, oporność nowotworu na leczenie pozo-
staje znaczącym wyzwaniem. Dotyczy to zarówno oporności pierwotnej, polegają-
cej na tym, że pacjenci w ogóle nie reagują na pewne terapie, jak i oporności nabytej,
która rozwija się w trakcie leczenia. Zidentyfikowanie przyczyn tej oporności mo-
głoby pozwolić na poprawienie skuteczności istniejących terapii, zaproponowanie
obiecujących terapii łączonych, a być może nawet zasugerowanie nowych opcji te-
rapeutycznych. Dlatego dogłębne zbadanie mechanizmów wpływających na rozwój
oporności na leczenie jest kluczowe dla poprawy przeżywalności pacjentów onko-
logicznych.

Mikrośrodowisko guza (tumor microenvironment, TME) jest potencjalnym źró-
dłem czynników zmniejszających skuteczność leczenia. W skład TME wchodzą no-
wotworowe komórki macierzyste (cancer stem cells, CSC), zwykłe komórki nowo-
tworowe (cancer cells, CC), naczynia krwionośne, komórki układu odpornościo-
wego, podścielisko i macierz pozakomórkowa. Co istotne, różne części TME są ze
sobą powiązane, tworząc złożoną i heterogeniczną sieć potencjalnych czynników
wpływających na oporność na leczenie, która nie została jeszcze w pełni zbadana.
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Modelowanie komputerowe i matematyczne może uchwycić zawiłości TME i po-
móc w identyfikacji czynników oporności oraz obiecujących terapii łączonych, po-
prawiając dzięki temu odpowiedź na leczenie.

Celem niniejszej rozprawy doktorskiej było wykorzystanie modelowania ma-
tematycznego i komputerowego do zbadania heterogeniczności mikrośrodowiska
guza jako czynnika wpływającego na oporność na leczenie i zaproponowania po-
tencjalnych terapii łączonych. W szczególności skoncentrowałam się na dwóch ele-
mentach TME: niskim pH oraz populacji macierzystych komórek nowotworowych.
W szczególności zbadałam, czy ekspresja enzymu regulującego pH o nazwie CAIX
może służyć jako marker biologiczny dla terapii inhibitorami punktów kontrolnych
odporności (immune checkpoint inhibitors, ICI), takich jak anty-PD-1 oraz anty-
CTLA-4, i potencjalny cel terapii łączonych. Ponadto badałam wpływ plastyczności
komórek, czyli zdolności komórek nowotworowych do zdobywania i tracenia cech
komórek macierzystych, na oporność na radioterapię. Wyniki tych badań zostały
opublikowane w trzech publikacjach naukowych, które stanowią podstawę tej roz-
prawy. Publikacje te są przedstawione w rozdziałach 3-5, a każda z nich jest poprze-
dzona krótkim wprowadzeniem podsumowującym najważniejsze wyniki publika-
cji, wyszczególniającym mój wkład w artykuł oraz wyjaśniającym związek między
publikacjami a celami badawczymi i hipotezami tej rozprawy. Ponadto rozprawa
zawiera rozdział wprowadzający, który objaśnia czytelnikowi podstawy badanych
problemów biologicznych, przedstawia istotną literaturę i uzasadnia podjęty temat
badawczy. Kolejny rozdział zawiera listę celów badawczych, które ustaliłam w tej
rozprawie, oraz odpowiadających im hipotez badawczych. Rozprawa kończy się
rozdziałem poświęconym dyskusji, w której podsumowuję najważniejsze wyniki
i wnioski, wyszczególniam, w jaki sposób cele badawcze zostały osiągnięte, oma-
wiam ograniczenia przeprowadzonych badań oraz przedstawiam pomysły na dal-
sze badania w tej tematyce.

1.2.1 Rozdział 1: Introduction

Rozdział ten stanowi wprowadzenie do tematu badawczego. Uzasadnia on podjęcie
tematyki badania czynników oporności na leczenie, wylicza znane czynniki oporno-
ści oraz wprowadza czytelnika w tematykę mikrośrodowiska guza jako źródła po-
tencjalnych mechanizmów oporności na radioterapię i terapię inhibitorami punktu
kontrolnego odporności. Rozdział ten składa się z dwóch sekcji. Pierwsza z nich
objaśnia tematykę od strony biologicznej: wyjaśnia mechanizm działania badanych
terapii, podsumowuje stan wiedzy na temat oporności na te terapie oraz przedsta-
wia przypuszczalne czynniki oporności, które badam w tej rozprawie. Natomiast
druga sekcja stanowi krótki przegląd matematycznych i komputerowych modeli ra-
dioterapii i immunoterapii znalezionych w literaturze, skupiając się na modelach,
które poświęcone były badaniu mechanizmów oporności na te terapie.

1.2.2 Rozdział 2: Research Aims and Hypotheses

Drugi rozdział wylicza szczegółowe cele badawcze rozprawy wraz z postulowa-
nymi hipotezami. Kolejne trzy rozdziały wyjaśniają jak każda z publikacji stano-
wiących podstawę rozprawy, pomogła w osiągnięciu celów badawczych oraz w po-
twierdzeniu lub odrzuceniu postawionych hipotez badawczych.



6 Chapter 1. Summary

1.2.3 Rozdział 3: An in silico model to study the impact of carbonic anhy-
drase IX expression on tumor growth and anti-PD-1 therapy

Rozdział odpowiada publikacji zatytułowanej "An in silico model to study the im-
pact of carbonic anhydrase IX expression on tumor growth and anti-PD-1 therapy",
której jestem pierwszym i głównym autorem i która została opublikowana w Jo-
urnal of the Royal Society Interface w styczniu 2023 roku. W publikacji zbudowałam
model komputerowy guza i jego mikrośrodowiska w celu wyjaśnienia stosunkowo
niskiej odpowiedzi na inhibitory punktów kontrolnych odporności oraz zbadania
ekspresji CAIX jako biomarkera i potencjalnego celu terapii łączonej z terapią anty-
PD-1. Zaproponowany model hybrydowy składa się z modelu agentowego (agent-
based model, ABM), który symuluje zachowanie się komórek nowotworowych i
immunologicznych, oraz modelu różniczkowego opisującego gradienty substancji
w TME. Wybór tego typu modelu był zmotywowany tym, że modele agentowe są
stworzone do modelowania heterogeniczności symulowanego środowiska, co do-
brze odpowiada celowi badania zróżnicowanego TME. Ponadto modele agentowe
mają zastosowanie w studiowaniu powstawania nowych zachowań w wyniku od-
działywań podsystemów, co czyni je doskonałym kandydatem do identyfikacji po-
tencjalnych biomarkerów. Proponowany model może służyć jako narzędzie do ba-
dania biomarkerów immunoterapii i eksploracji terapii łączonych, zgodnie z moim
pierwszym celem badawczym. W ramach swojej rozprawy użyłam tego modelu do
jakościowej reprodukcji wyników eksperymentów dotyczących wpływu CAIX na
TME in vivo, wizualizacji wpływu ekspresji CAIX na TME i odpowiedź immunolo-
giczną oraz analizy jego wpływu na skuteczność terapii anty-PD-1 w odmiennych
typach guzów: guzach ze znaczącą ekspresją PD-L1 przed rozpoczęciem leczenia
oraz w guzach bez ekspresji PD-L1 przed rozpoczęciem leczenia. Symulacje in silico
sugerują, że niska ekspresja PD-L1 przed wprowadzeniem leczenia inhibicją CAIX
nie powinna dyskwalifikować pacjentów od otrzymywania terapii łączonej anty-
CAIX i anty-PD-1, co przyczynia się do wyjaśnienia sprzecznych wyników badań
nad PD-L1 jako biomarkerem ICI i uzasadnia dalszą pracę nad mierzeniem dyna-
micznej ekspresji PD-L1 w celu przewidywania odpowiedzi na leczenie anty-PD-1,
zamiast statycznej ekspresji. Ponadto wyniki sugerują, że ekspresja CAIX jest obie-
cującym kandydatem na biomarker dla ICI, uzasadniając dalsze badania terapii łą-
czonej anty-PD-1 i anty-CAIX, zgodnie z moim drugim celem badawczym.

1.2.4 Rozdział 4: Carbonic anhydrase IX suppression shifts partial response
to checkpoint inhibitors into complete tumor eradication: model-
based investigation

W rozdziale czwartym przedstawiam model różniczkowy, który zbudowałam w
celu uzupełnienia modelu agentowego przedstawionego w poprzednim rozdziale.
Został on opisany w publikacji "Carbonic anhydrase IX suppression shifts partial
response to checkpoint inhibitors into complete tumor eradication: model-based in-
vestigation", której jestem pierwszym i głównym autorem i która została opubliko-
wana w czerwcu 2023 roku. Założenia modelu oparte są na wynikach jakościowych
uzyskanych z symulacji ABM. Jednak niższa złożoność tego modelu pozwoliła na
jego kalibrację przy użyciu danych in vivo, symulacje ilościowe, analizę matema-
tyczną i tym samym dalszą walidację wcześniejszych wyników i hipotez. Analizy i
symulacje numeryczne sugerują, że inhibicja CAIX w połączeniu z dostatecznie silną
odpowiedzią immunologiczną (na przykład wywołaną przez ICI) może zmienić
asymptotyczne zachowanie modelu i zmienić stabilną chorobę na eliminację guza,
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co potwierdza wnioski wyciągnięte z ABM, że inhibicja CAIX poprawia odpowiedź
na ICI w guzach z ekspresją CAIX. Następnie, za pomocą modelu różniczkowanego
porównałam różne rodzaje terapii łączonych: przeciwciała anty-PD-1 z anty-CAIX,
przeciwciała przeciwko CTLA-4 z anty-CAIX, anty-PD-1 z anty-CTLA-4, a wresz-
cie potrójna kombinacja obu ICI z anty-CAIX. W szczególności symulowałam różne
dawki i długości leczenia, aby odtworzyć fakt, że terapie nie są stosowane u pacjen-
tów bez końca. Symulacje in silico sugerują, że monoterapie prowadzą do nawrotu
guza, nawet po początkowej odpowiedzi na leczenie, podczas gdy inhibicja CAIX
w połączeniu z wystarczającą dawką ICI prowadzi do trwałej i całkowitej odpowie-
dzi. Te wyniki i wnioski dodatkowo przyczyniają się do realizacji mojego drugiego
celu badawczego. Ponadto symulacje wskazują, że inhibicja CAIX redukuje udział
komórek macierzystych w guzie, co mogłoby wspomóc terapie mające trudności z
usuwaniem komórek macierzystych, takie jak chemioterapia.

1.2.5 Rozdział 5: Cellular plasticity upon proton irradiation determines
tumor cell radiosensitivity

Ostatni rozdział z wynikami poświęcony był mojemu wkładowi w publikację "Cel-
lular plasticity upon proton irradiation determines tumor cell radiosensitivity", która
została opublikowana w Cell Reports w lutym 2022 roku. Publikacja była wynikiem
międzynarodowej współpracy pod kierownictwem dr. Claudii Peitzsch z National
Centre for Tumor Diseases w Dreźnie. W tym badaniu porównaliśmy wpływ trady-
cyjnej radioterapii fotonowej z mniej konwencjonalną radioterapią protonową na he-
terogeniczność guza, w szczególności na dynamikę komórek macierzystych nowo-
tworu (CSC). Usunięcie CSC uważane jest za kluczowe dla długotrwałej kontroli no-
wotworu po radioterapii, dlatego istotne jest ustalenie, który rodzaj promieniowa-
nia skuteczniej usuwa CSC. Eksperymenty in vitro przeprowadzone przez grupę ba-
dawczą były w stanie uchwycić jedynie efekt końcowy każdego rodzaju napromie-
niania na populację CSC. Zauważyłam w tym dobrą okazję dla zastosowania mo-
delowania matematycznego, które mogłoby pomóc zidentyfikować rolę plastyczno-
ści komórkowej w obserwowanej dynamice CSC. Dlatego zbudowałam model rów-
nań różniczkowych zwyczajnych przedstawiający populacje CC i CSC. Skalibrowa-
łam model danymi in vitro oraz danymi znalezionymi w literaturze, dopasowując
go do obserwacji eksperymentalnych. Model dobrze odwzorował wyniki ekspery-
mentalne, a także podkreślił znaczenie dwóch rodzajów plastyczności: zwykłej pla-
styczności, polegającej na zdobywaniu komórki cech komórek macierzystych przez
CC, oraz odwrotnej plastyczności, polegającej na utracie właściwości macierzystych
przez CSC. W szczególności jakościowa analiza modelu wykazała, że oba rodzaje
plastyczności musiały zostać ujęte w modelu, aby odzwierciedlić jakościowy trend
w danych eksperymentalnych. Ponadto, dopasowanie modelu do danych ujawniło,
że radioterapia z wykorzystaniem protonów istotnie rzadziej indukuje plastyczność
niż promieniowanie fotonowe, co częściowo może wyjaśniać wyższy potencjał te-
rapeutyczny terapii protonowej. Podsumowując, dwukierunkowa plastyczność ko-
mórek jest kluczowa do wyjaśnienia dynamiki CSC po napromienianiu i jej głębsze
zbadanie mogłoby zmniejszyć częstotliwość nawrotów po radioterapii. Mój wkład
w tę publikację wpisuje się w ramy mojego trzeciego celu badawczego.
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1.2.6 Rozdział 6: Discussion

Rozdział podsumowuje najważniejsze wnioski uzyskane w rozprawie, jednocze-
śnie zwracając uwagę na ograniczenia przeprowadzonych badań i perspektywy dal-
szych badań. W rozprawie zidentyfikowałem ekspresję CAIX i plastyczność komór-
kową jako przypuszczalne mechanizmy oporności na ICI i radioterapię. Jednak,
mimo że analizy matematyczne i symulacje in silico są obiecujące, uzyskane wyniki
powinny być poddane dalszej weryfikacji in vitro i in vivo. Podczas moich badań zi-
dentyfikowałem także interesujące ścieżki dalszych badań, w tym ciekawy wpływ
leczenia ICI na dynamikę CSC oraz złożone interakcje między ekspresją CAIX, roz-
rostem podścieliska nowotworu, a skutecznością ICI. Nie wchodzą one w zakres
rozprawy, ale stanowią obiecującą tematykę dalszych badań.

Podsumowując, ta rozprawa spełnia wszystkie trzy cele badawcze okre-
ślone w jej drugim rozdziale, a uzyskane wyniki i wnioski wspierają moje hipotezy
badawcze.
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Chapter 2

Introduction

2.1 Biological background and significance

Even today, cancer remains a serious public health concern that decreases life ex-
pectancy and quality of life. Based on the GLOBOCAN estimates of cancer inci-
dence and mortality created by the International Agency for Research on Cancer,
there were about 19 million new cancer cases and almost 10 million cancer deaths
in 2020 globally [1], [2]. Importantly, according to World Health Organization’s pre-
pandemic data from 2019, cancer is one of the leading causes of premature death (i.e.
death occurring between the ages of 30-70 years) in 127 countries and ranks as the
most common cause in 57 countries [3]. Moreover, this number is believed to rise in
the future. Despite tremendous progress in cancer treatment in recent years, several
open challenges persist.

One of these challenges is the full understanding of treatment failure. Unfortu-
nately, some tumors do not respond to certain therapies at all. Additionally, even ini-
tially favorable responses may ultimately result in treatment failure. This resistance
that develops during treatment is known as acquired resistance, while the inability
to elicit any response in treatment-naive tumors is called intrinsic resistance [4]. A
deeper understanding of the factors contributing to these phenomena is critical to
improving response rates and prolonging the overall survival of cancer patients.

Many promoters of drug resistance are already known. They include genetic fac-
tors, for example, genetic mutations of the cancer cells that bypass the drug’s mech-
anism, as well as epigenetic factors, such as DNA methylation [5]. Furthermore, cer-
tain membrane transporter proteins reduce drug accumulation in the tumor cell by
extruding the drug molecules [4]. Emergent evidence designates intratumoral het-
erogeneity and microenvironmental factors as promising yet underexplored contrib-
utors [4], [6]. The tumor microenvironment (TME) generally comprises tumor cells,
various immune cells, stroma, blood vessels, secreted substances, and the extracel-
lular matrix [7]. These components interact with and influence each other, thereby
creating an interlaced network that may have either a pro- or antitumorigenic ef-
fect. For example, oxygen gradients in the TME determine which tumor cells are
hypoxic, thereby significantly affecting their properties and susceptibility to treat-
ment [8]. On the other hand, the induced tumoral heterogeneity then contributes to
a heterogeneous nutrient distribution. For instance, hypoxia rewires the metabolism
of tumor cells, affecting the metabolic byproducts secreted into the TME [9]. Over-
all, the TME is believed to harbor many promising resistance factors and treatment
targets yet to be elucidated. The main aim of this thesis was to explore the hetero-
geneous tumor microenvironment via mathematical modeling as a contributor to
treatment resistance and evaluate whether its components may serve as potential
treatment targets.
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2.1.1 Immune checkpoint inhibitors

Mechanism of action

A classic example of treatment resistance can be seen in immunotherapy, in par-
ticular, immune checkpoint inhibitor (ICI) therapy. Immunotherapy harnesses the
immune system to eliminate cancer cells. It is based on the observation that immune
cells can recognize tumor cells and limit their accumulation, which is termed im-
munoediting [10]. Tumors generally go through three phases of this immunoediting
process [11]. At the beginning of tumor initiation, there is the elimination phase,
where immune cells identify and remove potentially malignant cells. Then, during
the equilibrium phase, immune cells control tumor growth. Finally, some tumors
reach the evasion phase, in which tumor cells escape the immune system and the
tumor grows and metastasizes. Numerous mechanisms contribute to this final im-
mune evasion, including the expression of immune checkpoints on cancer cells [10].
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FIGURE 2.1: Diagram showing the basic mechanisms of anti-CTLA-4 and anti-
PD-1 therapy. In the lymph nodes, antigen-presenting cells present tumor anti-
gens to T cells resulting in T cell activation, a process which can be attenuated
by CTLA-4 upregulation. Activated T-cells travel to the tumor site and launch

an attack, which might be suppressed via the binding of PD-1 with PD-L1.

Immune checkpoints are intrinsic regulatory pathways that are hardwired into
the immune response and are thus essential to central and peripheral tolerance [12].
Their inhibitors work by disrupting these pathways and reinvigorating immune re-
sponses. This mechanism is presented in figure 2.1 and shortly described in this
paragraph. Antigen-presenting cells (APCs) transport tumor antigens from the tu-
mor site to the lymph nodes, where they present them to T cells via the major histo-
compatibility complex (MHC). Once this antigen is recognized by the T-cell receptor
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(TCR), T cell activation is initiated and the T cell upregulates cytotoxic T lympho-
cyte antigen 4 (CTLA-4) expression in response [13]. For full T-cell activation, cos-
timulation by the binding of the CD28 molecule and its ligand B is needed. How-
ever, CTLA-4 competes with CD28 for B7 ligands, attenuating T cell activation [14].
Hence, CTLA-4 is mainly responsible for the regulation of T-cell activation in the
priming phase. The immune cells that do get activated migrate to the tumor site to
eliminate cancer cells. In the TME, another regulatory mechanism is present. Acti-
vated T cells (and to a lesser degree other immune cells) express the programmed cell
death 1 receptor (PD-1), whose ligand PD-1 ligand 1 (PD-L1) is canonically found
on APCs and cancer cells [15]. Upon binding, inhibitory signals are sent out and
suppress T cell activation, proliferation, and cytotoxic activity [14]. This induced
inability to attack tumor cells is sometimes called T-cell exhaustion, and it supports
immune evasion by cancer cells [15], [16]. Therefore, the PD-1–PD-L1 pathway reg-
ulates immune response mainly during the effector phase. Interestingly, while some
cancer cells express PD-L1 constitutively, others do it as a defense mechanism in re-
sponse to IFN-γ that is produced by active T cells, so its expression may be dynamic
and heterogeneous [17].

Since the immune checkpoints CTLA-4, PD-1, and PD-L1 inhibit immune re-
sponse and thus reinforce tumor growth, targeting them should help control tumor
progression. Certain drugs called immune checkpoint inhibitors ( also called anti-
PD-1, anti-PD-L1, and anti-CTLA-4 depending on their target) have been developed
based on this premise. These inhibitors are antibodies that bind to their given tar-
get like PD-1 and CTLA-4, preventing their binding with their canonical ligands and
thus their inhibitory mechanism. For a more detailed explanation of the mechanisms
of ICIs see [18].

Rationale for further research on ICI resistance

Over the last decade, ICIs have become a pillar of cancer therapy and are recom-
mended for an ever-growing number of malignancies. In clinical practice, the most
used ICIs are monoclonal antibodies targeting PD-1 and PD-L1. These inhibitors are
also commonly used in combination with other ICIs, such as those targeting CTLA-
4 [19]. In 2022, the combination of a PD-1 inhibitor and a new antibody targeting
the lymphocyte activation gene 3 (LAG-3) has been FDA-approved [20], becoming
the first ICI targeting receptors other than those mentioned above. However, in my
thesis, I will focus on two of the ICIs established in clinical practice, i.e., anti-PD-1
alone and in combination with anti-CTLA-4.

CTLA-4 blocking antibodies were the first ICI to be FDA-approved in 2011 for the
treatment of metastatic melanoma, irrevocably changing the treatment of advanced
malignancies. Its clinical effectiveness was proven in a three-arm randomized phase
iii trial [21]. The trial compared patients treated with the CTLA-4 inhibitor ipili-
mumab with patients receiving the peptide vaccine gp100 and patients treated with
a combination of both drugs. The median overall survival was 10 months, 10.1
months, and 6.4 months in the combination therapy group, ipilimumab alone group,
and gp100 group, respectively, making it the first treatment to successfully prolong
the survival of metastatic melanoma patients in a randomized trial.

Nowadays, anti-PD-1 is preferred, as it tends to have a superior therapeutic ef-
fect to anti-CTLA-4 while being better tolerated by the patients [18]. Nevertheless, all
ICIs come with caveats. First and foremost, they have a relatively low response rate.
It is to be noted that defining a beneficial response to ICIs is difficult due to a phe-
nomenon called pseudo-progression [22]. During pseudo-progression, the tumor
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seems initially resistant to treatment. That is, at first, growth is observed which is
later followed by a decrease in tumor burden. Usually, response to cancer treatment
is evaluated by RECIST criteria, which are based on measuring lesion diameters us-
ing imaging techniques such as CT scans. In this system, progressive disease denotes
an increase of 20% in the sum of the longest diameters of the lesion compared with
the smallest value recorded and absolute growth of at least 5 mm [23]. Some patients
with pseudo-progression meet these guidelines for disease progression, even though
they ultimately experience durable responses. Therefore, other response criteria for
immunotherapy were created, such as immune-related response criteria (irRC) and
irRECIST [24]. Response rates may thus have different meanings in distinct trials.
However, regardless of the methodology, response to ICIs is for most tumors ob-
served in less than half of the patients [14], [25]. Moreover, immune-related adverse
events (irAE) are often associated with this therapy, impairing the nervous system,
gastrointestinal system, and skin. Ipilimumab, a CTLA-4 inhibitor, causes irAEs in
70 − 88% of patients, including severe events in 10 − 27% of patients [26]. Similarly,
pembrolizumab, a PD-1 antibody, leads to grade III/IV events in 10 − 13.3% of pa-
tients [12]. Although combination therapy with anti-PD-1 and anti-CTLA4 increases
response rates (to ca. 57.6% in advanced melanoma, ca. 23% in non-small cell lung
cancer), it has also a significantly higher incidence of severe irAE at ca. 55.5% [12],
while still lacking in response rate. Improving response rates to ICIs could tremen-
dously improve the lives of cancer patients. Moreover, the identification of puta-
tive non-responders could help avoid unnecessary toxicity. Therefore, there is a dire
need for the identification of resistance mechanisms as well as predictive biomarkers
for ICI therapy.

State of the art of biomarker research

Various factors have been and are being investigated as potential biomarkers. For
a comprehensive review see [27]. Here, I will summarize the limitations of the two
factors, which are nowadays used in clinical practice.

The most thoroughly investigated biomarker for anti-PD-1 therapy is the expres-
sion of its ligand PD-L1 on cancer cells which can be assayed by immunohistochem-
istry assays. However, it remains an imperfect marker, as demonstrated by the fact,
that some studies have observed a correlation between PD-L1 expression and ICI ef-
fectiveness, while others have not [28]. Additionally, some PD-L1 negative patients
respond to anti-PD-1. Several explanations for this discordance have been proposed.
First, independent studies use different assays and PD-L1 cut-off values [27]. Sec-
ondly, PD-L1 expression is heterogeneous in time and space, as mentioned before,
so insufficient sampling may skew the results. Finally, other resistance mechanisms
might hinder PD-L1-positive patients from deriving clinical benefits.

The second most popular biomarker is tumor mutational burden (TMB), which
quantifies the density of nonsynonymous mutations in the tumor genome. The ra-
tionale for using it as an ICI biomarker is that mutations generate immunogenic
neo-antigens and thus stimulate immune response. However, TMB is still a contro-
versial marker. Some studies and meta-analyses seemingly confirm its association
with ICI effectiveness in a subset of cancers [29], [30], while others find only weak
or even a lack of correlation [31]. Even studies supporting TMB as a biomarker, re-
port some tumor types as significant outliers [30]. Again, these discrepancies may
be partially explained by the lack of standardized TMB quantification methods and
thresholds, implying a need for standardization and further validation. On the other
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hand, other factors might confound the association between TMB and ICI effective-
ness. For example, McGrail et al. observed that TMB-high tumors in which TMB did
not correlate with a high T cell infiltration, did not have better response rates to ICI
than TMB-low tumors [32]. They speculated that the immune infiltrate is responsible
for the predictive power in the TMB-high cohorts.

To summarize, although some biomarkers are used in clinical practice, and even
more are under investigation, they require further validation. Furthermore, they
probably cannot discriminate fully between responders and non-responders. Due
to the complexity of tumor-immune interactions and the heterogeneity of the TME,
finding a single effective biomarker might be impossible [27]. Hence, predictive
models taking into account multiple factors should be developed. This poses oppor-
tunities for computational modeling which allows us to quickly and inexpensively
identify new promising biomarkers and resistance mechanisms, as well as integrate
them into one model that can be used in research and clinical practice.

The TME as a biomarker source

In my research, I have focused on investigating the heterogeneous TME as a source
of resistance mechanisms to ICIs. In particular, I focused on the acidic niche, which
is usually a part of the microenvironment of solid tumors (see figure 2.2). This is
partially due to the Pasteur effect, i.e. the reliance of cells on anaerobic glycolysis in
the absence of oxygen. Tumors are usually poorly perfused by vasculature, leading
to hypoxic (oxygen-deprived) areas within the tumor, further away from the blood
vessels. This hypoxic environment induces cells to rely on anaerobic glycolysis, a
metabolic pathway that produces protons and lactate, acidifying the neighborhood.
Moreover, cancer cells tend to have an aberrant metabolism and often revert to gly-
colysis even in the presence of oxygen - a phenomenon that is termed the Warburg
effect [33]. Finally, many cancer cells express enzymes from the family of carbonic
anhydrases, which aid in regulating their internal pH. Of particular interest is the
protein carbonic anhydrase IX (CAIX), as it is overexpressed in many cancers and
promotes tumor growth [34]. It catalyzes the reversible hydration of CO2, thereby
acidifying the extracellular space while regulating intracellular pH. Therefore, it not
only contributes to the development of the acidic niche but also protects the cancer
cell from the detrimental effects of low pH, such as anergy and death [35]. On the
other hand, immune cells do not have such protective measures. Hence, the acidic
TME suppresses immune cells, in particular subduing the cytotoxicity of tumor-
infiltrating lymphocytes (TILs) [36] and making CAIX inhibition a promising syn-
ergist of immunotherapy. Chafe et al. showed in a pre-clinical study that suppress-
ing CAIX with the inhibitor SLC-0111 improves the effectiveness of combination
therapy with anti-PD-1 and anti-CTLA-4 in mouse models [37]. However, mouse
models rarely translate to human studies [38]. Computational and mathematical
models, especially when calibrated with clinical data, provide a stepping stone be-
tween murine experiments and human trials. This led me to investigate CAIX as a
biomarker for ICI therapy in silico, which I have done in [39], [40].
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FIGURE 2.2: Diagram showing the main causes of TME acidification. (A) Large
distance from blood vessels turns tumor cells hypoxic. Due to the Pasteur ef-
fect, these cells revert to anaerobic glycolysis and produce lactate, acidifying
the TME. (B) Due to the Warburg effect, cancer cells prefer glycolysis (bold
arrow) to oxidative phosphorylation (dotted arrow) even in the presence of
oxygen, leading to lactate accumulation. Moreover, CAIX catalyzes the hydra-
tion of CO2, enhancing proton production and thus acidifying the extracellular

space.

2.1.2 Radiotherapy

Rationale for further research on radioresistance

Radiotherapy (RT) is one of the main treatments for solid tumors, with the majority
of patients receiving it as a first-line treatment, in an adjuvant setting, or as palliative
care [41], [42]. Localized radiation - usually consisting of X-rays or γ-rays delivered
via photons, although proton beam therapy (PBT) is also gaining traction - impairs
cancer cells either by directly damaging their DNA or by generating reactive oxygen
species that induce cancer cell injury via oxidative stress [43]. If the damage cannot
be repaired, this results in cell cycle arrest. However, certain tumors seem to be
resistant to irradiation.

Many approaches to enhance radiosensitivity have been proposed, including in-
hibition of intracellular antioxidants to increase cell death via oxidative stress. Other
approaches targeted the radioresistance-inducing TME and aimed at combatting tu-
mor hypoxia or modulating the cancer-associated fibroblast-mediated remodeling of
the TME. Combination of radiotherapy with immunotherapy to increase antitumor
immunity locally as well as strengthen the abscopal effect was also considered [44],
[45]. Despite this constantly deepening understanding of radioresistance, testing of
new treatment protocols, and technological advancements, radioresistance in cancer
remains a problem, especially since not all pre-clinical findings translate into clinical
practice [46], [47].

Additionally, even seemingly responding patients experience tumor recurrence
after radiotherapy, which is one of the main challenges in radiation oncology. In
head and neck cancer, 10 − 25% of irradiated tumors metastasize after treatment,
resulting in a median overall survival of 3-4 months after the metastasis diagnosis
[48]. One study on radiotherapy after breast-conserving surgery observed a 7.3%
rate of locoregional recurrence within 5.1 years, which climbed to 19.5% for patients
younger than 40 years old [49]. Another study observed regional recurrence in 90%
of cervical cancer patients undergoing definitive radiotherapy [50]. In early-stage
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non-small-cell lung cancer, recurrence was diagnosed in 18% of patients [51]. Con-
cluding, for various malignancies, there is significant room for improvement when
it comes to relapse rates after radiotherapy. Identifying the causes of radioresistance
and recurrence post-radiotherapy could lead to the development of superior treat-
ment strategies and increase the overall survival of patients.

Cancer stem cells as potential resistance drivers

In recent years, researchers have focused on a specific subset of cancer cells known
as cancer stem cells (CSCs) due to their potential role in tumor growth and recur-
rence. According to the CSC hypothesis, these self-renewing cells with differentia-
tion potential may be the driving force behind tumor development and resistance
to treatment [52], see figure 2.3(A). They are generally believed to be radioresis-
tant for most tumor types [52], although some studies report contradicting findings
[53]. This might be partly explained by the differences in behavior between CSCs
in distinct cancer types [54]. Additionally, the difficulty in correct CSC identifica-
tion might be confounding study results. Although several surface markers of CSCs
have been identified, such as ALDH, CD44, CXCR4, and CD133, they distinguish
between CC and CSC only in some tumor types [54]–[56]. Nonetheless, several
mechanisms of CSC radioresistance have been uncovered, supporting the hypoth-
esis that the removal of CSC is crucial for a durable response to therapy. These
mechanisms include the activation of various pro-survival signaling pathways, e.g.
Wnt/β-catenin, Notch, Hedgehog, TGF-β, and the PI3K, AKT/mTOR pathway [57].
Furthermore, various CSC populations seem to have superior DNA repair capaci-
ties and enhanced protection from oxidative stress, diminishing radiation-induced
death [58]. Finally, pre-clinical studies suggest that the number of tumorigenic cells
determines radiosensitivity, and CSCs have an enhanced ability to initiate tumors
[59]. In conclusion, CSC removal is believed to be the key to complete and durable
tumor eradication.
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FIGURE 2.3: Interplay between irradiation and CSC. (A) CSC are more radiore-
sistant and have an enhanced ability to initiate tumors, hence, they survive
treatment and repopulate the tumor. (B) Environmental and therapeutic fac-

tors trigger cellular plasticity.

Apart from their high tumorigenic potential and intrinsic drug resistance, can-
cer cells seem to display bi-directional plasticity, where they can lose or acquire a
stem phenotype [60], [61], as illustrated in figure 2.3(B). This allows them to adapt to
their ever-changing environment and contributes to spatial and temporal tumor het-
erogeneity [60], [62]. The TME heavily contributes to this cancer cell plasticity. For
example, signaling factors secreted by stromal cells or immune cells fuel phenotypic
plasticity [63]. Moreover, hostile environments such as hypoxic or acidic niches may
trigger the transition from CC to CSC [62], [63]. Another factor contributing to cancer
cell plasticity is therapeutic pressure, including radiotherapy. Partially, this is due
to the upregulation of certain transcription factors following irradiation, but also to
the effect of radiotherapy on the TME, i.e. the induction of a pro-inflammatory TME
and increased secretion of signaling factors by the stromal and immune cells [61].
Therefore, radiotherapy itself contributes to the emergence of a treatment-refractory
population in the tumor. A deeper understanding of the interactions between ra-
diotherapy, TME heterogeneity, and CSC plasticity could therefore improve radiore-
sponse rates and minimize the risk of cancer regrowth after irradiation.

Proton beam therapy

Proton radiotherapy has the benefit of superior dose distribution to photon radio-
therapy, with a distinctly pronounced dose deposition peak (called the Bragg peak)
at a penetration depth that is largely dependent on the initial energy of the protons
[64]. Hence, the bulk of the radiation dose can be placed inside the tumor, thus
achieving maximal tumor eradication, and sparing healthy tissue. Additionally, by
superimposing several proton fields, the radiation dose can be precisely calibrated
to the given tumor and minimize damage to the peripheral tissue. Therefore, PBT
is nowadays most commonly used to treat tumors close to vital organs [65]. How-
ever, in other cases, it is unclear whether this enhanced dose distribution justifies
the higher cost and the limited availability of PBT facilities, especially, since there is
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no consensus about whether proton therapy offers a significant clinical benefit over
photon therapy [65]. The biological effect of PBT is usually quantified as the relative
biological effectiveness (RBE), which is the ratio of photon radiation to the proton
dose required to elicit the same biological effect. Although the RBE of proton ther-
apy is generally assumed to be equal to 1.1 [66], the mechanisms underlying this
enhanced biological effect as well as its real extent are not yet determined.

Some pre-clinical studies indicate that proton beam therapy has superior CSC-
targeting capacity than photon radiotherapy for various cell lines [67], [68]. Inter-
estingly, photon radiation has been shown to upregulate CSC markers in vitro [69].
In [56], we set out to investigate the impact of proton therapy on several different
cell lines and determine whether the putative-enhanced CSC removal might be due
to radiation-induced cellular plasticity. In particular, we compared the impact of
photon and proton irradiation on the dynamics of CSCs to see, if proton radiation
also enriches for CSCs and whether the mechanisms governing this enrichment are
the same for both therapies. My mathematical model allowed me to investigate the
dynamic cellular plasticity, i.e. the ability of cancer cells to acquire or lose stemness
properties over time, which is difficult to observe in vitro. The ultimate goal of the
study was to determine whether PBT and its impact on tumor heterogeneity might
reduce radioresistance.

2.2 In silico modeling in oncology

In silico models are increasingly used in cancer research [70]. This term usually refers
to mathematical or computational models, which allow for simulations, e.g. of bio-
logical experiments, and thus complement in vitro and in vivo experiments. Impor-
tantly, in silico experiments do not raise any ethical concerns, as opposed to their
in vivo counterparts. Thereby, they help to adhere to the three principles of animal
research, postulated by William Russel and Rex Burch in the 1950s and dubbed the
3Rs: Replacement, Reduction, and Refinement [71]. These principles suggest that
animal models should be replaced with more humane methods whenever possible,
the number of animals participating should be reduced to the absolute minimum,
and the experiment design should be refined to reduce harm to the animals. Nowa-
days, they are broadly accepted by the scientific community and even mandated by
the European Parliament’s and Council’s Directive 0220/06/63/EU [72]. Computa-
tional models offer a replacement for animal studies, as postulated by the first prin-
ciple. Furthermore, in silico experiments are not constrained by the remaining two
principles, allowing for the testing of scenarios that would be unfeasible in real life
either due to ethical concerns, financial burden, time constraints, or simply the com-
plexity of the scenario, which is harder to control in living organisms or to recreate
in vitro. In particular, in silico experiments may supplement the planning of experi-
ments by testing out various experimental protocols and identifying those which are
the most likely to be informative and should be validated in vivo.

Moreover, it should be noted that findings from animal experiments are not al-
ways confirmed by studies in humans, implying that animal models are not ideal
representatives of the human body [38]. Mathematical and computational models,
especially when calibrated with clinical, experimental, and pre-clinical data, may
help translate animal studies to humans. For example, mice models are believed
to successfully illustrate specific processes of cancer development [38], that may be
then combined in an in silico model to better represent the complex disease in a hu-
man setting.
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Furthermore, in silico experiments are relatively easy to reproduce, especially
when the model and its implementation are shared. This is especially important in
cancer research, where an analysis found that only about 10% of landmark studies
were reproducible [73]. In the case of in vivo or in vitro studies, it can be quite chal-
lenging to determine, whether this difficulty in reproducing the findings results from
insufficient information on the experiment design, natural variability, lack of exper-
tise of the reproducing team, or whether the original results were wrong, whereas
mathematical analyses and computational simulations can generally be thoroughly
reviewed.

Finally, mathematical and computational models can be used to make sense of al-
ready available data. Such models can incorporate variables that were not originally
observed and help determine, whether they could be responsible for the observed
results.

In conclusion, in silico experiments have their place in cancer research. They
can be used to generate and initially test hypotheses, interpret experimental results,
predict long-term outcomes that were not measured in original experiments, and
help design future in vitro and in vivo experiments and trials. However, we must be
aware of their limitations and be informed about the advantages and disadvantages
of different types of models. More complex models might be more accurate and
convincing for biologists and medical professionals. On the other hand, they are
usually analytically intractable, allowing only for simulations. Moreover, increased
complexity induces more time-consuming and computationally expensive simula-
tions. Finally, such models also require more data for calibration and validation and
have increased intrinsic uncertainty. Simpler models, on the other hand, might be
more useful in clinical practice as they can be easily calibrated, validated, and ana-
lyzed and their computation is quicker. Yet, oversimplification might ignore impor-
tant features and lead to wrong conclusions. All in all, no model will ever perfectly
replicate reality, but it can provide important insights and advance cancer research,
a sentiment beautifully phrased by the statistician George Box in the aphorism "All
models are wrong, but some are useful" [74].

2.2.1 In silico models of immune checkpoint inhibitor therapy

The mechanisms of immune checkpoint inhibitors are highly complex, providing
an abundance of modeling opportunities. In this subsection, I will provide a short
overview of mathematical and computational models that have been used to inves-
tigate the interplay between tumors and the immune system, immune checkpoint
inhibitor therapy biomarkers, and combination therapies.

Mathematical modeling of tumor-immune interactions has a long history, start-
ing with non-spatial ordinary differential equation models. One of the most ba-
sic ways to model the interactions between a tumor and the immune system is
to take a classic one-equation tumor growth model (exponential growth, logistic
growth, Gompertz model, Bertalanffy model) and add a second equation describ-
ing the behavior of effector cells, i.e. immune cells with the ability to kill cancer
cells [75]. The two equations usually follow a predator-prey model, in which ef-
fector cells are the predators killing their prey: the cancer cells [75]. The probably
most well-known predator-prey-type tumor model was proposed by Kuznetsov in
1994, which - while staying fairly simple and being mathematically tractable - sim-
ulates interesting cell behaviors, such as oscillatory dynamics, tumor dormancy and
a phenomenon termed "sneaking through" [76]. "Sneaking through" refers to the
observation that in certain cases a smaller amount of inoculated cells may lead to
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tumor progression in animal models, while a medium amount results in tumor re-
jection, and is explained by the fact that the small initial tumor is not immunogenic
enough to mount an efficient immune response [76]. However, this model consists
only of two variables and ignores numerous factors impacting tumor-immune inter-
actions, so it is too simplistic for certain research questions. Therefore, depending
on the research question, one or more components might be added to the model, in-
cluding variables describing other immune cells, cytokines, normal tissue, or other
parts of the TME. For an overview of simple extensions of the above-mentioned
two-equation model, see [77]. Here, I will focus on more modern models used to
investigate immune checkpoint inhibitors or combination therapies.

First, let us look at continuous models, which are used when the bulk behav-
ior of cells is of interest, e.g. when predicting treatment outcomes or testing treat-
ment protocols. They describe the bulk of the tumor or its subsets (such as CC and
CSC) by differential equations, including the above-mentioned ordinary differential
equations, delayed differential equations that consider time delays, and partial dif-
ferential equations that capture spatial tumor growth. For example, in [78], Butner
et al. proposed a mechanistic model of tumor growth throughout immunotherapy,
that accurately replicated the ultimate tumor burden in clinical trials. Two of the
model’s parameters - the growth rate at first re-staging and a parameter quantify-
ing the collective immune response strength - were identified as potential predictive
biomarkers of immunotherapy. Partial differential equation models capturing the
spatial distribution of cells have also been proposed, e.g. to investigate the syn-
ergy between ICIs and a dendritic cell vaccine at various dosages [79]. The spatial
aspect of the model captured the uneven infiltration of T cells whose density in-
creased toward the tumor rim. Multicompartmental models have also contributed
to the study of immunotherapy. For example, in [80] the authors considered a three-
compartment ODE model of the spleen, blood, and tumor, and they used this model
to simulate various treatment protocols with anti-PD-L1 in randomly generated tu-
mors. Another compartmental model representing a generic virtual patient that
included pharmacokinetics was proposed in [81]. The model was calibrated with
clinical data and proven to reproduce several types of clinically observed responses
to immunotherapy. Finally, the model was used to make predictions about com-
bination therapies, for which human clinical data was not available, and reported
increased efficiency of administering anti-PD-1 before CTLA-4 than vice-versa.

On the other end of the spectrum, there are discrete models, such as agent-based
models (ABMs) or cellular automata (CAs), which are commonly used when the tu-
mor heterogeneity or TME must be captured (see figure 2.4 for an example). They
simulate each cell individually, accounting for its interaction with other cells and
the environment. Sometimes, they are coupled with continuous models to connect
the cellular scale represented by the discrete model with the tumor/organ scale, e.g.
by modeling cancer cells discretely and substances in the TME continuously. For
example, Gong et al. proposed a multiscale agent-based model of tumor-immune
interactions for spatial simulations of tumor growth in response to anti-PD-1 and
anti-PD-L1 [82]. The model was calibrated with values from literature, without rep-
resenting a specific tumor type. By varying parameters quantifying tumor muta-
tional burden and antigen strength, they simulated tumors with histological pat-
terns that resembled patients’ biopsies, showing, that these genetic mutations might
be drivers of heterogeneous tumor architectures. Finally, they used their model to
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semi-quantitatively assess PD-L1 expression in the outer rim of a tumor as a poten-
tial biomarker for anti-PD-L1 therapy. In [83] Kather et al. build an ABM of colorec-
tal cancer that included tumor, immune, and stromal cells and investigated the im-
pact of stroma on immune response and ICI effectiveness. The simulations allowed
them to conclude that stroma can be both pro- and antitumorigenic, depending on
the immune infiltrate, making it an attractive ICI combination target. Later, the re-
search group used an extended three-dimensional version of their model to compare
combination immunotherapy approaches in colorectal cancer [84]. They concluded
that distinct tumor phenotypes - in terms of adjuvanticity and antigenicity - might
require different combinatorial strategies.

In conclusion, mathematical and computational models have offered valuable in-
sights into the mechanisms of ICI resistance and potential combination therapies. In
[39] and [40] I contributed to these efforts by investigating anti-CAIX therapy alone
and in combination with ICIs in silico. First, I built a discrete, holistic model of the
TME which allowed for the qualitative replication of experimental findings and the
evaluation of CAIX expression alone and in combination with tumor PD-L1 expres-
sion as a biomarker for ICI therapy and combination therapy with anti-CAIX. Then,
in [40], I used the insights from the discrete model to build an ODE model that was
able to quantitatively replicate experimentally observed tumor volume dynamics,
observe variables that had not been measured experimentally, such as the CSC frac-
tion, and investigate the synergy of the combination of anti-CAIX, anti-PD-1, and
anti-CTLA-4.
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FIGURE 2.4: A simple lattice-based agent-based model. (A) The model has one
type of agent: a cancer cell with the attribute p, denoting proliferation capacity.
(B) The agent (denoted by a red dot) lives on a lattice, occupying one spot.
Its neighborhood can be defined in various ways. In this example, we have
drawn its Moore neighborhood, comprisied of the occupied cell and the eight
surrounding cells. The agent can perform three actions: proliferate, migrate,
and die. For proliferation and migration, an empty space in the neighborhood
is necessary. (C) A diagram showing the rules governing the agent’s behavior.
Black rectangles denote decision-making rules and blue ellipses the resulting

actions. In each iteration, each agent’s behavior follows the presented rules.

2.2.2 In silico models of radiotherapy

In radiotherapy, mathematical modeling has most commonly been used to predict
treatment outcomes and determine promising treatment schedules, but also to im-
prove our understanding of its biological effect. This subsection will be a short re-
view of mathematical and computational models that have been used to study the
impact of radiotherapy on radioresistance and stem cell dynamics and vice versa.
For a more in-depth review of mathematical models of cellular plasticity see [85].

First, it should be noted that mathematical modeling has aided our understand-
ing of radiotherapy for decades. Most prominently, the linear quadratic (LQ) model
describing the probability of cell survival as a function of radiation dose is widely
adopted in oncology and used to compare different treatment protocols, optimize
treatment schedules, or adjust irradiation protocols after missed doses [86]. This
popularity is probably partially due to its simplicity and its extensive validation
[86]. However, it is a great simplification of the effects of irradiation and may not be
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applicable in all cases. For example, if a very heterogeneous cell population in terms
of cell cycle phases were to be modeled, each subpopulation’s survival might corre-
spond to a differently parametrized LQ model, and fitting an LQ model to the entire
population might not be informative [87]. Similarly, when considering in vivo mod-
els, the TME might influence a cell population’s sensitivity to radiation and there-
fore its survival probability. Hypoxic cancer cells tend to be more radio-resistant and
hence, modeling a population of hypoxic and non-hypoxic cells with an LQ model
could confound the relationship with oxygen distribution [87].

The above-mentioned limitations can be overcome using multi-compartment LQ
models. In [88], Yu et al. coupled a differential equation model of CSCs and CCs
exposed to fractionated radiation treatment with LQ models of cell survival to de-
termine the radiosensitivity parameters. They compared a single-compartment LQ
model yielding the same radiobiological parameters to both cancer cell phenotypes
with a dual-compartment model differentiating between CSC and CC. Their dual-
compartment model offered a superior method for the estimation of radiobiology
parameters in the case of fractionated radiotherapy, while preserving the assump-
tions of the conventional single-compartment LQ model. Simulations using the ODE
model with the parameters obtained from the dual compartment LQ model indi-
cated that hypofractionation might help overcome radioresistance for some tumors,
which was in line with clinical observations but could not be shown using the con-
ventional LQ model. Moreover, their simulations offered a possible explanation for
the ineffectiveness of radiotherapy in glioblastoma multiforme, which was in con-
trast with radiosensitivity status in vitro. They hypothesized that this was due to the
very high radioresistance of their CSC population that survived the treatment and
led to fast tumor regrowth. Later, the research group used with double-compartment
LQ model coupled with a new ODE model of solid tumor growth to optimize treat-
ment schedules for glioblastoma multiforme radiotherapy [89]. In this new model,
they considered the induction of a stem cell phenotype after irradiation. Their pro-
posed super hyper-fractionated approach resulted in significant recurrence delay in
comparison to conventional approaches. This dual-compartment LQ was also used
to determine the radiosensitivity of four breast cancer cell lines, with the conclu-
sion that CSC in breast cancer is more radioresistant [90]. The authors also fitted the
model to clinical data and determined that both the single and dual-compartment
models fit the data well for large radiation doses and yielded similar radiobiological
parameters. However, due to lacking clinical data, the fitted parameters were calcu-
lated with large uncertainties. These uncertainties were even larger for small doses,
and the two models no longer resulted in similar parameters.

In [91], the necessity of eradicating the CSC population to achieve tumor con-
trol was explored using a stochastic model of the stem, progenitor, and mature cells.
Their model considered unidirectional plasticity of CSC, that is stem cells could turn
into progenitor cells, but not the other way around. The authors considered CD133
as a biomarker for CSC and compared the probability of eradicating the theoretical
CSC population with the probability of eradicating the CD133+ population, which
would be measurable for experimental data, concluding, that CD133+ cells are a reli-
able, even if not perfect, representation od CSCs. In [92], Forouzannia et al. build on
this idea of calculating the tumor control probability with respect to CSC only, by in-
corporating reverse plasticity events as well, i.e. non-stem cells acquiring stemness.
Then, they compared different radiotherapy schedules for tumors with and without
plasticity, concluding, that plasticity does indeed impede radiotherapy. Leder et al.
also developed a model incorporating bidirectional plasticity and used it to iden-
tify promising radiotherapy schedules for glioblastoma mouse models [93]. Here,
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stemness acquisition was radiation-induced only. Interestingly, the optimal sched-
ule led to CSC enrichment in the tumor, indicating, that the relationship between
CSC and tumor progression is more complex than previously believed. Later, they
used the model to predict clinical outcomes of the previously developed schedule
and translate it from mice to humans and inform a small-cohort Phase 1 clinical trial
[94].

Discrete models have also contributed to our understanding of the impact of cel-
lular plasticity on radioresistance. In [95], Poleszczuk et al. built an agent-based
model of tumor growth and studied among others radiotherapy outcomes on tu-
mors with different plasticity probabilities, showing that plasticity-free tumors re-
spond best to radiotherapy. However, while low- or plasticity-free tumors grew after
treatment, high-plasticity tumors were generally eradicated after treatment, proba-
bly due to CSC exhaustion due to the frequent plasticity events.

In [56], I have proposed a differential model of CC and CSC dynamics after ir-
radiation and radiation-induced bi-directional plasticity. I have calibrated it with in
vitro data to replicate CSC dynamics after X-ray and proton radiotherapy in various
cell lines and investigated the differences between these two types of radiation. My
aim was to analyze the impact of both irradiation types on cellular plasticity and
evaluate their CSC targeting potential.
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Chapter 3

Research Aims and Hypotheses

The main aim of this thesis is to use mathematical and computational modeling
to explore the tumor microenvironment and its heterogeneity as a contributor to
treatment resistance and evaluate whether its components may serve as potential
targets for combination therapy. More specifically, I have set the following detailed
research aims:

1. Build a model of tumor-immune interactions on a single cell level to provide
a tool for identifying immunotherapy biomarkers in the TME as well as deter-
mining resistance mechanisms that could be promising targets for combination
therapy.

2. In particular, study the impact of tumoral CAIX expression on the evolution
of the TME and ICI effectiveness in silico, and evaluate it as a combination
therapy target with ICIs.

3. Model and analyze the influence of cancer cell plasticity on tumor heterogene-
ity and the effectiveness of X-ray and proton radiotherapy.

Achieving these aims will support the following four hypotheses:

1. By incorporating tumor-immune interactions and their interdependence with
the TME in a computational model, we can identify resistance mechanisms
and promising biomarkers for ICI therapy.

2. Tumoral CAIX expression induces an immunosuppressive TME, thereby im-
pairing ICI effectiveness and serving as a confounder for immune-related pre-
dictive ICI biomarkers such as PD-L1 expression.

3. For CAIX expressing tumors, combining transient ICI therapy with CAIX sup-
pression can improve the treatment outcome.

4. Mathematical modeling can help explain the differences between proton and
X-ray radiotherapy that are not immediately visible in experimental data.

Work on these research aims has led to the publication of three journal arti-
cles, which are the basis for this thesis. The following three chapters correspond
to one publication each and explain how the given publication is connected with
the research aims and how the obtained results and conclusions support the above-
enumerated research hypotheses. Additionally, my contributions to each publica-
tion are stated in the introduction of each chapter.
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Chapter 4

An in silico model to study the
impact of carbonic anhydrase IX
expression on tumor growth and
anti-PD-1 therapy

4.1 Introduction

In [39], I tackled the challenge of overcoming the relatively low response to immune
checkpoint inhibitors. More precisely, I proposed a hybrid computational model
of the tumor and its microenvironment and used it to investigate the expression of
the enzyme CAIX as a predictive biomarker for anti-PD-1 therapy and a combina-
tion therapy target. Using numerical simulations, I studied the influence of CAIX
expression and suppression on the temporal and spatial development of the TME
and immunotherapy effectiveness. The model is based on a previously developed
and validated hybrid model [83], [84], that I have significantly extended to capture
TME features and treatment options that were crucial to my research aims and hy-
potheses, as described in section 4.2 of this thesis. Additionally, I performed all
of the numerical simulations presented in the publication and analyzed the results.
My supervisor prof. Jan Poleszczuk’s main role in this publication was supervision
and guidance throughout the conceptualization of the project. Our co-author prof.
Jakob Nikolas Kather proposed and performed the survival analysis on TCGA data
as described in section 3.5 and part of section 2.3 of the publication. I was the main
investigator of this study, wrote the original draft of the paper, and it corresponds to
my first research aim to build a model of the tumor and its microenvironment, and
partially contributes to my second research aim, i.e. the study of the impact of CAIX
expression on immunotherapy, which was elaborated on in [40].

4.2 Relation of the publication to the research aims of the
thesis

4.2.1 Build a model of tumor-immune interactions on a single cell level
to provide a tool for identifying immunotherapy biomarkers in the
TME as well as determining resistance mechanisms that could be
promising targets for combination therapy

The model proposed in this publication is a hybrid model consisting of two parts: an
agent-based model describing the behavior of tumor cells and T cells and a partial
differential equation model of the substances that are present in the TME. The cells
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consume or produce the described substances (oxygen, glucose, protons) influencing
the nutrient and pH distribution profile in the TME. On the other hand, the actions
of the cells depend on nutrient availability and the acidity of the TME. Hence, both
parts of the model influence each other, as is the case in the human body. Besides
these substances, which are simulated using reaction-diffusion equations, the model
also considers other environmental factors such as fibrotic stroma and IFN-γ, which
is produced by active T-cells and induces PD-L1 expression.

As stated in the research aim, immune and cancer cells are simulated on a single-
cell level as agents which move on a lattice. The reasons for choosing an agent-based
model as the basis of this hybrid model were three-fold. First, ABMs are an obvious
candidate for capturing a system’s heterogeneity. They do not model the bulk of
cells like differential equations do. Instead, each cell is modeled as an autonomous
agent, equipped with its features, properties, and history [96]. Its location in the het-
erogeneous environment directly impacts the agent’s behavior and properties and
vice versa. By design, ABMs also allow for the incorporation of stochasticity in a
way that induces a heterogeneous population or environment, instead of includ-
ing it as a noise term. Secondly, ABMs capture emergent phenomena, which are
not easily deduced by looking at the system’s assumption alone, as they depend on
the agents’ interactions with each other and their environment in a complex way
[96], [97]. By only determining a set of rules to which our autonomous agents ad-
here, which might be based on observations of single-cell behavior in vitro or our
hypotheses, we can simulate the evolution of the entire system made up of vari-
ous agents and their environment, making it a perfect model for identifying and
studying biomarker candidates. Finally, ABMs can be built modularly, facilitating
the expansion or modification of such a model to incorporate or remove biomarker
or combination therapy candidates [96].

The heterogeneity of the TME is incorporated in the model by considering acidic
and hypoxic niches, various types of cancer cells (e.g. stem and non-stem, highly
and barely antigenic, with or without CAIX- or PD-L1 expression), a varied immune
infiltrate in terms of T-cell anergy, as well as the ABM-intrinsic spatial heterogeneity.
Most of these properties are not set in stone and may change over time due to the
influence of microenvironmental factors, cell interactions, or randomness, allowing
for the study of dynamic biomarkers and emergent resistance mechanisms.

As mentioned before, the model is an extension of an agent-based model devel-
oped mainly by my supervisor and presented in [83], [84]. However, I have sig-
nificantly modified and expanded the model to adapt it to my research problem.
Most importantly, I have added a model of tumor cell metabolism, included the
distribution of glucose, protons, and IFN-γ in the TME as well as their effect on
the agents, included dynamic CAIX and PD-L1 expression on cancer cells, removed
macrophages, and changed the implementation of lymphocytes to better represent
infiltration of most solid tumors. Moreover, I have added a pharmacokinetics model
of anti-PD-1 and anti-CAIX treatment. The exact modifications together with their
justifications are presented in the materials and methods section of the paper, sub-
sections 2.1 and 2.2.

To my knowledge, this is the first ABM combining tumor-immune interactions
and a model of the acidosis-inducing tumor metabolism, allowing for the simulation
of the combination of immunotherapy with acidosis-targeting treatments. In this re-
search, I focused on the enzyme CAIX an immunotherapy desensitizer, however, the
model considers many other factors of the TME which could drive immunotherapy
resistance, such as e.g. tumoral antigenicity, hypoxia, fibrotic stroma accumulation,
or the fraction and distribution of cancer stem cells. Moreover, the model is built
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modularly and may be easily extended to incorporate other factors that might be
decreasing sensitivity to immunotherapy. The proposed model offers a tool to in-
vestigate these factors as drivers of resistance or putative biomarkers for ICI therapy
either alone or in combination to create a promising biomarker panel and identify
novel combination therapy approaches. Its implementation in C++ and Matlab is
publicly available at https://github.com/JuliaGrajek/acidicTumorABM3D.

4.2.2 Study the impact of tumoral CAIX expression on the evolution of
the TME and ICI effectiveness in silico, and evaluate it as a combi-
nation therapy target with ICIs

Having established and implemented the model, I applied it to study the influence
of tumoral CAIX expression on the TME and immunotherapy effectiveness. This in-
vestigation was motivated by the first two hypotheses of this thesis. First, I wanted
to demonstrate how our model can aid in identifying resistance mechanisms and
biomarkers. Secondly, I sought to support my hypothesis that tumoral CAIX expres-
sion induces an immunosuppressive TME, impairing immune checkpoint inhibitor
effectiveness and potentially serving as a confounder for certain immune-related ICI
biomarkers.

First, I investigated the impact of CAIX expression on the TME. I simulated
n = 20 CAIX expressing and n = 20 CAIX knockout tumors (CAIX KO) for 40
days (see sections 3.1 and 3.2 of [39]). The model confirmed in-vitro observations
that CAIX expression significantly and persistently decreases mean extracellular pH
turning the TME acidic. Moreover, our simulated CAIX-expressing tumors had a
higher tumor burden, which was in line with experimental findings postulating that
CAIX expression in melanoma is associated with increased grade. Unlike the pre-
clinical experiments, in silico simulations allowed us to investigate the drastically al-
tered tumor composition of CAIX-expressing tumors, with an increased tumor cell
fraction and low stroma accumulation (see Figure 2 of [39]). Interestingly this lack of
stroma accumulation concealed the increased tumor burden in the volume measure-
ments. Finally and most importantly, these changes in the TME seemed to impact
the immune cell infiltrate. CAIX-expressing tumors were characterized by reduced T
cell infiltration and a lack of exhausted T cells, supporting the hypothesis that CAIX
diminishes T cell activity. Conversely, there was a subset of quiescent cells, i.e. cells
that are repressed by acidity and unable to attack, again, supporting the notion of an
immunosuppressive TME. A final clue supporting the immunosuppressive effect of
CAIX was the decreased PD-L1 expression in CAIX-positive tumors, which implied
diminished T-cell-induced PD-L1 expression.

Apart from studying the impact of CAIX expression on the evolution of the TME,
my objective was to investigate its influence on immune checkpoint inhibitor effec-
tiveness and its potential as a combination therapy target (section 3.3 of the publi-
cation). In the discussed publication, I focused on anti-PD-1 therapy. Figure 4 in
[39] shows the efficacy of anti-PD-1 therapy in four heterogeneous tumor groups:
tumors with and without CAIX expression that either express PD-L1 constitutively
or not. Three doses of anti-PD-1 were compared. The simulations suggest that im-
mune checkpoint blockade is much more effective in CAIX KO tumors than CAIX-
expressing tumors, while pre-treatment PD-L1 expression appears to have no im-
pact on the long-term outcome. This lends support to my hypothesis that CAIX
impairs ICI effectiveness independently of pre-treatment PD-L1 expression. Fur-
thermore, CAIX expression might actually be masking a potentially PD-L1-positive
tumor, that could benefit from anti-PD-1 therapy, by preventing immune-induced

https://github.com/JuliaGrajek/acidicTumorABM3D
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PD-L1 expression. Critically, this suggests that low PD-L1 expression prior to CAIX
inhibition should not disqualify patients from receiving combination therapy with
anti-CAIX and anti-PD-1. Moreover, my results indicate that measuring the dynamic
PD-L1 expression during treatment might increase its accuracy as a biomarker, es-
pecially in CAIX-positive tumors.

Backed by the above summarized in silico findings, I propose tumoral CAIX ex-
pression as a biomarker for ICI therapy and a driver of treatment resistance, as well
as a potential combination therapy target, in line with my second research aim and
hypothesis. In accordance with my first research aim and hypothesis, my model
deepened the understanding of acidosis of the TME as a resistance mechanism of
immunotherapy and suggested CAIX inhibition as a combination therapy target to
overcome this resistance. While my results corroborate the potential of CAIX as a
biomarker and therapeutic target, they should be further validated in vitro and in
vivo. Moreover, like all models, our model has certain limitations, as presented in
the discussion of this publication. Some of these limitations could be overcome by
supplementing these results with observations from other modeling approaches. In
particular, in [40] I proposed a continuous model, that could contribute to my re-
search aims in a way, that the hybrid model was not designed to. This publication is
presented in the following chapter.

4.3 The publication
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Immune checkpoint inhibitors (ICIs) are revolutionary cancer treatments.
However, the mechanisms behind their effectiveness are not yet fully under-
stood. Here, we aimed to investigate the role of the pH-regulatory enzyme
carbonic anhydrase IX (CAIX) in ICI success. Consequently, we developed
an in silico model of the tumour microenvironment. The hybrid model con-
sists of an agent-based model of tumour–immune cell interactions, coupled
with a set of diffusion-reaction equations describing substances in the
environment. It is calibrated with data from the literature, enabling the
study of its qualitative behaviour. In our model, CAIX-expressing tumours
acidified their neighbourhood, thereby reducing immune infiltration by
90% ( p < 0.001) and resulting in a 25% increase in tumour burden ( p <
0.001). Moreover, suppression of CAIX improved the response to anti-PD-1
(23% tumour reduction in CAIX knockouts and 6% in CAIX-expressing
tumours, p < 0.001), independently of initial PD-L1 expression, Our simu-
lations suggest that patients with CAIX-expressing tumours could respond
favourably to combining ICIs with CAIX suppression, even in the absence
of pre-treatment PD-L1 expression. Furthermore, when calibrated with
tumour-type-specific data, our model could serve as a high-throughput
tool for testing the effectiveness of such a combinatorial approach.

1. Introduction
Immune checkpoint inhibitors (ICIs), such as anti-PD-1 and anti-CTLA-4, re-
invigorate the immune response and thereby deter immune evasion by
tumours. They have revolutionized the treatment of various malignancies, par-
ticularly metastatic melanoma [1,2]. Nowadays, ICIs are a cornerstone of the
treatment of malignancies of almost any organ system, including cancer of the
lungs, breast, skin, gastrointestinal and genitourinary tract. However, while
some patients exhibit durable benefits, the majority do not respond to the treat-
ment [3–6]. Moreover, ICI therapy is associated with a high incidence of
immune-related adverse effects (irAEs) with some of the PD-1 inhibitors causing
irAEs in ca 70%of patients and severe irAEs in 10–13%of patients [7,8]. Therefore,
it is critical to understand what separates responders from non-responders. Fur-
thermore, there is an acute need for the development of combination therapies
that target factors driving resistance to ICI.

Over the past 10 years, considerable effort has been put into the search for ICI
biomarkers. Themost extensively investigated factor is the expression of the PD-1
ligand PD-L1 on tumour cells [9]. However, this does not discriminate fully
between responders and non-responders. For example, some PD-L1-negative
patients respond to anti-PD-1 therapy, presumably due to measurement errors
such as assay limitations or insufficient sampling that does not capture the het-
erogeneous and dynamic expression [10]. Furthermore, other patients respond

© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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despite the lack of PD-L1 on tumour cells, since it is PD-L1-
expressing immune cells that block the immune response
[10]. On the other hand, not all PD-L1-positive patients benefit
from the therapy because of other inhibitory pathways subdu-
ing the immune response [10]. A comprehensive review of the
investigated biomarkers with their limitations has been pre-
pared by Havel et al. [11]. Ultimately, there is no definite
predictive marker yet. It is believed that finding a single bio-
marker might be impossible as numerous factors influence
the success of immunotherapy. This poses an opportunity
for computational modelling, which enables us to quickly
and inexpensively build a predictive model that incorporates
various elements contributing to ICI effectiveness.

The effect of the immune system on tumour growth has
been modelled in various ways, including differential
equations [12,13], agent-based or hybrid models [14] and
evolutionary game theory models [15], offering new insights
into the intricate tumour–immune system interactions. A
deeper understanding of the role of immune cells in tumour
development has paved theway for themodelling of immuno-
therapies such as ICI. Gong et al. [16] developed an agent-
based model (ABM) simulating the effects of pre-treatment
PD-L1 expression and tumour neoantigen profile on anti-
PD-1 therapy. Lai et al. [17] built and analysed a continuous
model of anti-PD-1 coupled with anti-TNF-α therapy. Byun
et al. [18] used a compartmental model to study the synergistic
combination of anti-PD-1 and radiotherapy. However, the
intricacies of the influence of the tumour microenvironment
(TME) on the success of ICI therapy are still underexplored
[19,20].

Here, we have developed a hybridmodel, which combines
an ABM of tumour–immune system interactions with a
partial-differential equation model describing the substances
present in the TME. While there are models of tumour metab-
olism and the resulting acidic niche in the TME [21–24] and
models of tumour–immune interactions [25,26], to our knowl-
edge, this is the first computational model which takes into
account both of these factors. Therefore, it allows us to study
combination therapies that target immune response and the
immuno-suppressive TME.

In particular, we focus on the combination of PD-1 and car-
bonic anhydrase IX (CAIX) inhibitors, such as SLC-0111,
which has been deemed safe in a Phase 1 clinical trial [27].
CAIX is an enzyme present on the surface of cancer cells,
which acidifies the microenvironment by catalysing the
hydration of CO2. The extracellular acidification contributes
to immune escape as low pH subdues T-cell cytotoxicity
[28], while CAIX expression protects the cancer cells from
the effects of acidosis by regulating their intracellular pH
[29,30]. It is thus not surprising that CAIX expression has
recently piqued the interest of researchers investigating ICIs.
A preclinical study has shown CAIX inhibition in combination
with ICI to be a promising treatment in mouse tumour models
of melanoma and breast cancer [31]. However, treatments
tested in mouse models rarely translate to actual patients
[32]. We believe that in silico models, especially when cali-
brated with clinical data, may bridge the gap between in vivo
experiments and clinical practice.

In the present study, we have used our model to study the
role of CAIX expression in ICI therapy success. We simulated
the influence of CAIX on tumour growth, immune response
and the TME and evaluated the effectiveness of combining
PD-1 and CAIX inhibitors. Thanks to its bottom-up approach,

our ABM allows us to simulate emergent behaviour, such as
ICI effectiveness, based on simple assumptions about the
interactions between cells and their environment [33],
making it a well-suited model for biomarker investigation.
Due to its dynamical nature and three-dimensionality, the
model provides insights into the composition of the simulated
TME, as well as the dynamic evolution of markers such as PD-
L1 expression. Furthermore, our model is built in a modular
fashion, hence it can be easily extended to incorporate other
components contributing to ICI effectiveness.

2. Materials and methods
2.1. Model assumptions and implementation
We have built a three-dimensional computational framework
based on a previously developed well-characterized ABM
[25,26]. It is a hybrid model, composed of an on-grid agent-
based part responsible for the modelling of tumour–immune
interactions and a partial-differential equation model describing
the substances present in the TME. The previous model simulated
tumour growth in the presence of immune cells, fibrotic stroma
accumulation and necrosis induction due to the lack of oxygen.
The influence of the TME on immune cells was considered via
an umbrella variable termed adjuvanticity. To adapt this model
to our research problem, we expanded the notion of the TME by
incorporating tumour cell metabolism, which is responsible for
an acidic and nutrient-depleted TME, which impairs the
immune response. We assume that tumour cells consume
oxygen and glucose available in their neighbourhood and in
turn produce ATP and protons via aerobic and anaerobic respir-
ation. Nutrient scarcity may lead to the death or impairment of
tumour and immune cells. In particular, if the amount of ATP pro-
duced by a certain tumour cell is too small, the cell becomes
necrotic. On the other hand, the accumulation of protons may
turn both cell types quiescent, i.e. suppress their proliferation, or
induce cell death. A more detailed explanation of how tumour
metabolism and the influence of substances present in the
TME on the agents are modelled is given in the electronic
supplementary material.

Furthermore, to focus on targeted therapies, we included CAIX
and PD-L1 expression on tumour cells in our model. We assume
that each new tumour cell may express CAIX with a fixed prob-
ability CAIXfreq. CAIX acidifies the TME and increases the
tumour cell’s resistance to low pH, as described in the electronic
supplementary material. On the other hand, PD-L1 expression is
dependent on T-cell activity [34,35]. Attacking T cells produce
IFN-γ in their vicinity, and, once the IFN-γ concentration surpasses
a certain threshold, cancer cells in the neighbourhood start expres-
sing PD-L1. When lymphocytes try to attack cancer cells with PD-
L1 expression, the attack fails, and they become exhausted, i.e. they
irreversibly lose their ability to attack.

The previous model contained two types of immune cells, T
cells and macrophages. Since the current model had already
been heavily extended by modelling the TME in more detail,
thereby increasing computation costs, we simplified the
immune response to cut down on computation time, memory
requirements and the number of parameters. As T cells were
more fundamental to the mechanisms we wanted to model, and
their infiltration was supported by the experimental data we
tried to recreate, we removed macrophages from the model. Simi-
larly, we assumed that stroma was fully permeable to both
lymphocytes and tumour cells, as we were not focusing on
stroma-targeting therapies.

Finally, the previous model represented colorectal cancer,
which usually consists of densely packed cells. Due to this prop-
erty, it was assumed that immune cells could not occupy the
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same grid cell as tumour cells. However, we performed our simu-
lations without focusing on a specific tumour type, so we
removed this simplification. We set the grid size equal to the
average tumour cell diameter and thus assumed that only one
tumour cell can occupy one grid cell. This applied to both
active tumour cells and necrotic cells. Lymphocytes, however,
are much smaller than tumour cells; hence we allowed them
to occupy the same grid cell without limits. Moreover, since
T cells can usually slip in between tumour cells to infiltrate
tumours, we assumed that they can also occupy the same grid
cell as tumour cells.

In short, we have an on-grid ABM that considers two types of
agents: tumour cells and lymphocytes. Their actions are stochastic
but depend on the environment (in particular, on other agents in
their neighbourhood and the substance gradient in their grid cell
(figure 1a)). Moreover, agents have certain properties such as
stemness or proliferation capacity, which influence their actions
and thereby take into account the history of the given agent
(figure 1b,c). Simplified diagrams explaining the rules that
govern their behaviour in each iteration are presented in electronic
supplementary material, figure S1.

The main simulation engine is implemented in the C++
programming language. The simulations have been run and visual-
ized using Matlab 2020Rb. All source codes are freely available
at https://github.com/JuliaGrajek/acidicTumorABM3D.

2.2. Treatment optimization in heterogeneous tumours
For the comparison of ICI efficacy in heterogeneous tumour
groups, we simulated anti-PD-1 treatment at three dose levels:
d = 33%, 66%, 100% of the maximal dose. For this experiment,
we assumed that anti-PD-1 decreases the probability of T-cell sup-
pression by PD-L1, denoted PDL1SuppProb, by 25%, 50% and
75%, respectively, for the entire duration of the simulation.

To test several treatment schedules, we then introduced
simple pharmacokinetics in the model. We assume that the
serum concentrations of anti-PD-1 and CAIX inhibitors decay
exponentially with rate constant k = ln(2)/t1/2, where t1/2 is the
serum elimination half-life specific for the drug. Additionally,

CAIX inhibitors are administered orally, their concentration at
the administration site again decreases monoexponentially, and
it is fully absorbed into the bloodstream. The absorption rate con-
stant can be calculated by knowing the time of maximal drug
concentration in the body tmax in the following way: maximal
drug concentration occurs when the absorption rate equals the
elimination rate, i.e. ka(Xa)tmax ¼ k(X)tmax , where Xa denotes the
drug concentration at the site of administration and X the drug
serum concentration. From this, we get tmax ¼ ln(ka=k)=(ka � k)
and can determine the value of ka. By contrast, anti-PD-1 is
administered intravenously and is absorbed immediately. We
assume that drug concentration linearly corresponds to the drug
effect, i.e. PDL1SuppProb ¼ 1� 0:75� XantiPD1, where XantiPD1 is
the anti-PD-1 concentration in serum. The coefficient 0.75 was
chosen to correspond to the maximal dose tested in the prior
experiment. Similarly, CAIX inhibitors suppress CAIX expression
on cancer cells, i.e. they increase the probability that a cancer cell
stops expressing CAIX in the given iteration, which we denote
CAIXSup ¼ XantiCAIX.

2.3. Statistical analysis and visualization
Pairwise comparisons between CAIX knockout and CAIX
tumours were carried out on the results of the simulations with-
out treatment. Statistical significance was analysed using the
two-sided Wilcoxon rank-sum test implemented in Matlab
(Mathworks Inc. Matlab 2020Rb) in the ranksum function. Visual-
ization of the obtained data was performed using Python’s
matplotlib library.

Comparisons between multiple groups (treatment efficacy)
were analysed using the Kruskal–Wallis test with Dunn post hoc
analysis. Bonferroni correction was applied. Results were plotted
using Python’s seaborn library.

Survival analysis was performed in The Cancer Genome Atlas
(TCGA) database using the Kaplan–Meier Plotter developed by
Lanczky et al. and presented in [36]. Significance was measured
with the log-rank test. The cut-off value distinguishing high and
low CAIX expression was determined for each tumour type by
computing all possible cut-off values between the upper and
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lower quartile and choosing the best performing one, i.e. the most
significant one in terms of the log-rank test. To account for this
multiple hypothesis testing, we also report the false discovery
rate. The follow-up threshold was set to 60 months.

3. Results
3.1. Carbonic anhydrase IX induces acidification of the

tumour microenvironment and supports tumour
growth

To validate that the model is biologically plausible, we inde-
pendently simulated n = 20 CAIX knockout tumours (CAIX
KO) and n = 20 CAIX-expressing tumours (CAIX). Simulations
started from a spheroid with a radius of 30 tumour cells. Start-
ing with a spheroid as opposed to a single tumour cell allowed
us to drastically cut simulation time. At the same time, the

initialized tumours were still too small to cause significant
nutrient shortage that would induce a less homogeneous
tumour spheroid, e.g. having a significant necrotic core. The
nutrient gradients were always calculated as a steady state sol-
ution, hence, this initialization did not have an impact on the
TME. As this was simply due to an efficiency issue, the pub-
licly available codes allow to start the simulation from a
single tumour cell as well. A randomly sampled fraction of
CAIXfreq tumour cells expressed CAIX at the beginning of
the simulation in CAIX tumours, while CAIX expression was
non-existent in CAIX KO tumours. We recorded tumour
behaviour and changes in TME for 40 days, taking
measurements every 2.5 days.

Our model showed that CAIX expression significantly and
durably decreasedmean extracellular pH (from 7 to ca 6.6; p <
0.001) (figure 2a). This decrease in pH seemed favourable to
tumour growth, as our simulated CAIX tumours were con-
siderably bigger in terms of the number of tumour cells
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simulation mean pH over the entire domain is measured. (b) Tumour burden is here defined as the number of tumour cells in the domain. (c,d) Volume denotes the
number of tumour cells and necrotic cells, either including stromal cells or not. (e,f ) Tumour composition is shown as the fraction of cell types that make up the tumour.
Lymphocytes are much smaller than tumour cells, hence they are omitted.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20220654

4

34
Chapter 4. An in silico model to study the impact of carbonic anhydrase IX

expression on tumor growth and anti-PD-1 therapy



(figure 2b). More specifically, CAIX tumours consisted on aver-
age of ca 25% more tumour cells than CAIX KO tumours
( p < 0.001).

Since tumours consist of more than just cancer cells, we
also analysed tumour volume, defined as the number of
tumour cells, necrotic cells and stromal cells. We decided to
omit lymphocytes as their diameters are much smaller than
those of tumour cells and the grid cells of our domain, and
hence we may assume that they can slip in between other
cells and do not contribute to the tumour volume. Contrary
to the tumour cell burden, we observed that CAIX KO
tumours had a larger volume than CAIX tumours ( p < 0.001)
(figure 2c). This could be explained by the salient change in
tumour composition (figure 2e). CAIX tumours consisted
mainly of tumour cells (more than 60% of tumour compo-
sition), whereas CAIX KO tumours had a considerable
fibrotic stroma fraction. Removing stroma from our calcu-
lations induced a dramatic difference in tumour volume
between CAIX and CAIX KO tumours, in favour of the
CAIX tumours (figure 2d, p < 0.001).

3.2. Carbonic anhydrase IX expression impairs immune
response and PD-L1 expression

The abundant accumulation of stroma (figure 3c) implied a
superior immune response in CAIX KO tumours, which

could explain the hampered tumour growth. To quantify
T-cell infiltration in our simulations, we calculated the prob-
ability of finding a T cell in the vicinity of a tumour cell, i.e.
the fraction of tumour cells that have a T cell present within
the distance of two grid cells. We found that tumours lacking
CAIX expression have significantly increased T-cell infiltration
(92% versus 10%, p < 0.001, figure 3a). Moreover, we observed
higher PD-L1 expression in CAIX KO (figure 3b), which sup-
ports the notion of an enhanced immune response, since
PD-L1 is induced by T-cell activity.

Furthermore, our computational model allowed us to look
deeper and analyse the composition of the infiltrating T-cell
population (figure 3c). In CAIX KO tumours, we observed
more active T cells. However, there was also a dramatic
increase in exhausted T cells, indicating that immune cells
launch more attacks in CAIX KO tumours. On the other
hand, in CAIX tumours, we found a fraction of quiescent T
cells, which are cells suppressed by low pH that are thus
unable to attack.

3.3. Testing treatment efficacy in heterogeneous
tumour types

Having established that CAIX expression is beneficial to
tumour growth, we wanted to test whether CAIX inhibition
can improve anti-PD-1 treatment effectiveness. In addition,
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we decided to investigate the significance of PD-L1 expression
at beginning of treatment on therapy success. Therefore, we
simulated ICI treatment for three different doses in four dis-
tinct tumour groups: CAIX KO without initial PD-L1
expression, CAIX KO with initial PD-L1 expression, CAIX-
expressing tumours without initial PD-L1 expression and
CAIX-expressing tumours with initial PD-L1 expression.
Again, tumours were grown from a sphere with a radius of
30 tumour cells. We conducted 80 simulations per tumour
group (20 independent repeats per tested anti-PD-1 dose and
20 control tumours that did not receive anti-PD1 treatment)
and measured the change in tumour cell number in the treat-
ment group relative to the appropriate control group.
Treatment was administered on day 0 and response was
assessed on day 40.

ICI therapy was significantly more effective in the CAIX
KO groups than in the CAIX groups (figure 4). In the groups
without initial PD-L1 expression, we observed on average
22% tumour reduction for CAIX KO versus 6% tumour
reduction for CAIX for the highest studied anti-PD-1 dose,
14% for CAIX KO versus 4% for CAIX for the medium dose
(66% of maximum dose) and 7% for CAIX KO versus 2% for
CAIX for the lowest dose (33% of maximum dose). All of
these differences were significant with p < 0.05 (Kruskal–
Wallis test and post hoc Dunn analysis with Bonferroni

correction, see electronic supplementary material, figure S2).
On the contrary, initial PD-L1 expression was not required
for long-term efficacy, and we did not observe any statistically
significant difference in the median treatment effectiveness
between the PD-L1-expressing tumours and their PD-L1 non-
expressing counterparts. The only factor in which these
groups differed was the effectiveness of the lowest anti-PD-1
dose, which was significantly better in the CAIX KO no PD-
L1 group than the CAIX no PD-L1 (p = 0.03), while there was
no difference between the CAIX KO PD-L1 and CAIX PD-L1
groups. Concerning dose escalation, in CAIX KO tumours,
the highest dose was significantly more effective than the
lowest dose ( p < 0.001). In the CAIX KO group without initial
PD-L1 expression, there was no difference between the low
and medium dose, unlike in the group with initial PD-L1
expression, where we observed a slight difference (p = 0.047).

Exemplary tumours treated with the maximal anti-PD-1
dose for each studied tumour type are shown in figure 5. We
can see that all tumours have a necrotic core. CAIX KO
tumours are fully infiltrated by T cells and filled with fibrotic
stroma. It is clear that CAIX tumours have lower T-cell infiltra-
tion and that the present lymphocytes tend to stay outside of
the tumour, where the pH is higher. In short, the immune
response is not only greater in CAIX KO tumours, but the
immune cells are also better distributed.
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3.4. Simulation of combination therapy schedules
The results discussed in the previous section urged us to study
combination therapy between CAIX inhibition and anti-PD1
treatment more in depth and perform a preliminary study of
possible therapy schedules. Considering that CAIX KO
tumours had superior immune infiltration and response to
anti-PD-1, we hypothesized that administering CAIX inhibi-
tors prior to anti-PD-1 might increase the effectiveness of
combination therapy compared with simultaneous adminis-
tration. The reasoning for this hypothesis was that CAIX
inhibition would induce a hotter TME, thus increasing
immunotherapy effectiveness. To test this hypothesis, we
simulated seven treatment schedules in 20 independent in
silico tumours. We started each simulation from a spherical
tumour with a radius of 30 tumour cells and let it grow for
5 days. Daily anti-CAIX administration (in line with the proto-
col in [27]) started on day 5.5. As shown in figure 6a, T-cell
infiltration reached its peak on day 8.5. Hence, we tested treat-
ment schedules during which anti-PD-1 was injected once on
days 5.5 to 8.5. Anti-PD-1 is administered at two- to four-week
intervals, so we decided to look at the change in tumour
burden within two weeks after the anti-PD-1 treatment start.
We did not observe any significant difference between the
treatment schedules (figure 6b).

3.5. Carbonic anhydrase IX is a prognostic biomarker in
certain tumour types

To initially test our hypothesis that CAIX benefits tumour pro-
gression in clinical data, we performed a survival analysis for
21 tumour types divided into high and low CAIX-expressing
cohorts (overall n = 7489). We observed decreased overall

survival, determined by the HR and the p-value of the log-
rank test, in the CAIX-expressing cohort for 10 tumour
types, and a reversed relationship in two tumour types (see
electronic supplementary material, table S2). However, out
of these 12 tumour-type-specific analyses, only two had a
low FDR (liver hepatocellular carcinoma: HR 2.4, p < 0.001,
FDR = 1% and lung adenocarcinoma: HR 1.72, p < 0.001,
FDR = 10%). In both cases, high CAIX expression was associ-
ated with poor prognosis.

4. Discussion
Driven by the clinical need for increasing the effectiveness of
ICI therapy, we have developed a computational model of
tumour–immune interactions. Using this model, we studied
the influence of CAIX expression on tumour development
and ICI success. To our knowledge, this is the first ABM that
incorporates tumour metabolism and the resulting acidosis,
as well as immune cells, and allows thus for the modelling
of combination therapies that target both immune checkpoints
and the immuno-suppressive low pH. Our in silico simulations
produced a TMEwith pH values that are in linewith the litera-
ture, where the pH of the TME is reported to fall within 5.7–7
[37] and most commonly oscillates around 6.5–6.8 [28]. More-
over, we showed that CAIX expression significantly impairs
immune response and is therefore beneficial to tumour
growth. Furthermore, CAIX-expressing tumours did not
respond to ICIs, as opposed to CAIX KO tumours. This indi-
cates that CAIX expression might be one of the factors
driving resistance to ICI treatment. Our results provide a
basis for further research into CAIX as a biomarker for ICI
therapy and as a target for combination therapy. Importantly,

whole tumour lymphocytes stroma necrosis

CAIX KO

CAIX KO 
PDL1

CAIX

CAIX
PDL1

tumor cells lymphocytes stroma necrosis

Figure 5. Examples of tumours treated with the maximal anti-PD1 dose 40 days after treatment start. The first column shows the entire tumour, while the other
columns focus on a certain cell type and the remaining cells are plotted with increased transparency.
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our model may be used as a high-throughput tool for testing
combination therapy protocols, when calibrated with
tumour-specific data.

According to our simulations, CAIX-expressing tumours
are 25% larger than CAIX KO tumours in terms of tumour
cell number. This implies that CAIX-expressing tumours
might be more aggressive, which corroborates experimental
findings in [31], where Chafe et al. identified CAIX as a bio-
marker for worse overall survival in melanoma, which was
associated with increased grade and risk of metastasis. Simi-
larly, we also observed an association between high CAIX
expression and poor prognosis in liver hepatocellular carci-
noma and lung adenocarcinoma. It must be noted that we
have only performed a preliminary survival analysis, which
did not take into account other variables which might influ-
ence ICI effectiveness. Further multivariate analysis should
be performed to rule out any confounding variables. More-
over, we observed that the decreased tumour burden of
CAIXKO tumoursmight not be observed by volumemeasure-
ments alone, as the tumour composition changes significantly
when suppressing CAIX. In particular, CAIX KO tumours
seem to have a high stroma fraction, which might mask the
decrease in the number of tumour cells.

In our simulations, we also observed that CAIX
expression dramatically decreases T-cell infiltration and
suppresses their effector function. As T-cell quiescence is
reversible [4], inhibiting CAIX might reinvigorate immune
response by increasing T-cell infiltration and cytotoxicity.
Taken together with the observation that CAIX expression
inhibits PD-L1 expression on tumour cells, this supports our
hypothesis that combination therapy with anti-CAIX might
improve ICI efficacy. Considering that our model assumed
that PD-L1 is induced by lymphocyte activity, this was also
another indicator of improved immune response in CAIX
KO tumours.

The enhanced immune response in CAIX KO tumours led
to abundant stroma accumulation in our in silico experiments.
Studying the effects of stroma on treatment success was out of
the scope of this study, but remains an interesting question for
further research that focuses on cancer types that are linked to
chronic-inflammation-induced fibrosis. In [25], Kather et al.
postulated that fibrosis might have both pro-tumorigenic and
tumour-suppressive properties, depending on the immune
cell infiltration. Hence, research considering combination
approaches consisting of immunotherapy and treatments
targeting stroma and CAIX expression seems promising.

Finally, our simulations of anti-PD1 therapy in CAIX-
expressing and CAIX KO tumours suggest that CAIX is a
potential biomarker for ICIs and combination therapy might
be more effective for patients with CAIX-expressing tumours
that monotherapies. On the other hand, PD-L1 expression at
beginning of treatment was not crucial for ICI therapy effec-
tiveness. This might be explained by the fact that PD-L1
expression is dynamic, which is a limitation of this biomarker
that has been raised before, see [10]. In particular, we believe
PD-L1 expression in the pre-treatment TME to be amisleading
biomarker for combination therapy with anti-CAIX, as CAIX
expression induces a T-cell-depleted TME. Inhibiting CAIX
may then reinvigorate immune response and therefore up-
regulate PD-L1 expression. Hence, PD-L1 negative patients
should not be excluded from the treatment based on this
marker alone.

Our simulations did not find a significant difference
between treatment protocols that assume simultaneous
administration of anti-PD1 and anti-CAIX versus protocols
with a time delay. However, our model’s smallest discrete
time step is equal to 12 h. Therefore, it cannot be assumed
that simultaneous administration of both drugs is the best
treatment strategy, based on our results alone. For future inves-
tigations, the model could be recalibrated to allow for smaller
time steps and more precise modelling of treatment response.
Yet, this would significantly increase the already quite time-
consuming computation time. Hence, we believe that a con-
tinuous model would be more suitable to optimize the exact
treatment protocol. Such a simpler and computationally
cheaper model would also allow for the simulation of longer
treatment and various treatment cycles that could actually era-
dicate the tumour instead of slowing down its growth.
Moreover, it could be interesting to evaluate more complex
pharmacodynamics models which represent the treatment
effect more accurately.

It should be noted that in our simulations treatment was
administered while the tumour consisted of less than 200 000
cells. This obviously does not reflect clinical reality, where
such a small tumour would probably not be detected and trea-
ted. Since the behaviour of the agents depends only on the
TME and the interactions between the single agents, as
opposed to the absolute number of modelled cells, we believe
that our simulations reflect realistic qualitative results despite
the smaller scale. If our model were to be used for quantitative
analysis, larger tumours should be simulated. To avoid drasti-
cally increasing computation costs, the model could be
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Figure 6. Initial analysis of combination therapy schedules. The CAIX inhibitor SLC-0111 is being administered on day 5.5. (a) T-cell infiltration into the tumour after pH
normalization. The line plot represents averages of 20 simulations, the error bars represent s.d. (b) Change in tumour cell number within two weeks after anti-PD-1
administration. We observe no statistically significant difference between the treatment schedules. TIL: tumour-infiltrating lymphocyte.
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modified. One idea would be to forgo the three-dimensional
structure and perform two-dimensional simulations, which
would of course be a simplification, but would allow to
model larger tumours without increasing the number of mod-
elled agents. Another very interesting approach would be to
recalibrate the model in such a way that each grid cell would
represent a packet of homogeneous cancer cells, as proposed
in [38].

Our study’s limitation is that our model is currently only
calibrated with data from the literature. We aimed at elucidat-
ing the general impact of CAIX expression on tumour growth
and immune response, and therefore decided on performing
qualitative simulations. An obvious future step would be the
thorough calibration and validation of the model with
tumour-type-specific data to conduct quantitative analyses.
Moreover, as with all computational models, our framework
is a simplification of reality. For example, our model assumes
that CAIX expression is random, although CAIX is a known
hypoxia-related biomarker [39]. This simplification allowed
us to decrease model complexity without significantly impact-
ing qualitative model results. However, if somebody were
interested in studying the spatial distribution of CAIX, our
model could be extended by incorporating this mechanism.
Furthermore, our model is ignorant of other pH regulatory
pathways, such as other carbonic anhydrases, anion exchan-
gers and monocarboxylate transporters [40]. While it has
been shown that inhibiting CAIX alone increases extracellular
pH and decreases tumour growth, some studies report that
CAIX suppression may result in CAXII upregulation, and sup-
pressing both enzymes simultaneously results in superior
tumour eradication [41,42]. Hence, it could be interesting to

incorporate more pH regulatory mechanisms into our model
to study their interplay and impact on treatment effectiveness.
Finally, our model neglects other factors driving resistance to
ICIs, such as the presence of immune-suppressive cells in the
TME, like regulatory T cells, pro-tumour macrophages or
myeloid-derived suppressor cells. Nevertheless, we were able
to capture emergent behaviour which agrees with studies per-
formed on mice, while giving us deeper insight into the
underlying mechanisms, providing a bridge between animal
and human models. Thanks to its modular fashion, it can be
easily extended to test other hypotheses or treatment strategies
to quickly and inexpensively determine which are worth
further investigation.

Data accessibility. Survival analysis was performed on the n = 7489
samples available for pan-cancer mRNA analysis in the Kaplan–
Meier Plotter database [36]. The data are publicly available at TCGA
(https://portal.gdc.cancer.gov/). Source codes for the ABM are
freely available at https://github.com/JuliaGrajek/acidicTumor
ABM3D.

The data are provided in the electronic supplementary material
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Supplementary methods 

Modeling of substances present in the TME and tumor metabolism 

To properly model TME acidification we have to consider oxygen, glucose, and proton concentrations. 

These spatiotemporal substance concentrations are described by the following set of reaction-diffusion 

equations: 

𝛿𝑂

𝛿𝑡
= 𝐷𝑂∆𝑂 − 𝑎𝑂𝑂𝟙𝑇𝐶, 

𝛿𝐺

𝛿𝑡
= 𝐷𝐺∆𝐺 − 𝑎𝐺𝐺𝟙𝑇𝐶, 

𝛿𝐻

𝛿𝑡
= 𝐷𝐻∆𝐻 + 𝑏𝐻𝟙𝑇𝐶, 

where 𝑂, 𝐺, and 𝐻 denote oxygen, glucose, and protons, respectively. The substances 𝑆 diffuse with rate 

𝐷𝑆 and are consumed by tumor cells with rate 𝑎𝑆𝑆 or produced with rate 𝑏𝑆. The reactions only occur in grid 

cells in which tumor cells are present, as denoted by the indicator function 𝟙𝑇𝐶. We assume Dirichlet 

boundary conditions, i.e., 𝑆 = 𝑆𝑝ℎ𝑦𝑠 on the boundary, where 𝑆𝑝ℎ𝑦𝑠 is the physiological concentration of the 

given substance. Since diffusion occurs at a much faster timescale than the time step of our discrete 

simulations (𝑡 =  12ℎ), we can solve these equations in their steady-state using the finite difference method. 

 

Tumor cells may produce energy using two metabolic pathways: aerobic respiration and anaerobic 

respiration. The process of aerobic respiration can be described by the simplified reaction: 

𝐺 + 5𝑂2 ⟶ 29𝐴𝑇𝑃 + 𝑤𝑎𝑠𝑡𝑒. 

The exact amount of ATP produced may differ for different cell types but is reported to generally be around 

30 (1). We have chosen 29, in line with the model proposed by Tessi et al. (2). Anaerobic respiration, on 

the other hand, is described by the reaction: 

𝐺 ⟶ 2𝐿𝑎𝑐 + 2𝐻+ + 2𝐴𝑇𝑃. 

We assume that all uptaken oxygen goes to aerobic respiration, i.e. five oxygen molecules bind with one 

glucose molecule to produce 29 ATP molecules. The glucose surplus, that is not used for aerobic 

respiration, i.e. 𝑚𝑎𝑥(0, 𝑓𝐺 −
𝑓𝑂

5
), goes to anaerobic respiration, producing 2 ATP molecules per glucose 

molecule. Combining the two reactions, we obtain an equation for ATP production by a single tumor cell: 

𝐴𝑇𝑃 = 29min(𝑓𝐺 ,
𝑓𝑂

5
) + 2𝑚𝑎𝑥(0, 𝑓𝐺 −

𝑓𝑂

5
), 

where 𝑓𝑆 denotes the uptake of substance 𝑆 by the tumor cell, 𝑓𝑆 = 𝑢𝑆𝑆. It is worth noting that cancer cells 

revert to anaerobic glycolysis in two scenarios: in the absence of oxygen (Pasteur effect) and the presence 

of oxygen (Warburg effect) (3). We model the Pasteur effect by increasing the glucose uptake rate in case 

of hypoxia. The Warburg effect is included in the respective uptake rates. 

 

Apart from the protons produced from aerobic respiration, CAIX expression also contributes to TME 

acidification. We consider the following equation describing proton production by a single tumor cell: 
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𝑏𝐻 = 𝑏(2𝑚𝑎𝑥(0, 𝑓𝐺 −
𝑓𝑂

5
),⏟            + 𝑐

𝑎𝑒𝑟𝑜𝑏𝑖𝑐𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛

), 

where 𝑐 is the number of protons produced due to CAIX expression and 𝑏 denotes the proton buffering 

coefficient. 

 

The assumptions about the effect of the substance concentrations on the agents are as follows: 

• In the case of lack of nutrients, i.e. if ATP<ATPthresh, the tumor cell becomes necrotic (4). 

• If O<hypThresh, the given grid cell becomes hypoxic. Hypoxia increases the apoptosis rate of 

lymphocytes (5) and the glucose uptake rate of tumor cells (Pasteur effect). 

• If G<glucThresh, lymphocytes cannot migrate or attack (6). 

• If H > TUprotThreshQuiescence tumor cells become quiescent; i.e., they don’t proliferate. 

Moreover, they may become necrotic with probability 

𝐻−𝑇𝑈𝑝𝑟𝑜𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑄𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑐𝑒

𝑇𝑈𝑝𝑟𝑜𝑡𝑇ℎ𝑟𝑒𝑠ℎ−𝑇𝑈𝑝𝑟𝑜𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑄𝑢𝑖𝑒𝑠𝑐𝑒𝑛𝑐𝑒
, 

where TUprotThresh denotes the proton concentration at which tumor cells die with probability 1 (7). This 

value is higher for tumor cells that express CAIX (8–10).  

• If H > ImprotThreshQuiescence lymphocytes become quiescent; i.e., they cannot proliferate or 

attack. Similar to tumor cells, quiescent lymphocytes may die with a probability dependent on the 

proton concentration (11–13). 

 

All of these effects are reversible except those resulting in cell death. The values of the threshold 

parameters are given in Supplementary Table 1. 

 

Param. Description Default Source 

seedUnderneath if fibrosis can be seeded below the cell False Assumption 

dx Grid cell width in cm 14.9*1e-4 (14) 

TUpprol probability of tumor cell proliferation 0.5055 (14) 

TUpmig probability of tumor cell migration 0.35 (14) 

TUpdeath probability of tumor cell death 0.1216 (14) 

TUpmax max. proliferation capacity 10 (14) 

TUdanti antigenicity strength of mutating tumor cell 0.1 (14) 

TUdamageThresh T cell inflicted damage threshold for tumor 
cell 

2 (14) 

TUps Tumor stem cell probability of symmetric 
division 

0.42 (14) 

TUpmut mutation probability (increases 
antigenicity) 

0.4 Assumption 

IMkmax killing capacity of lymphocytes 10 Assumption 

IMpmax proliferation capacity of lymphocytes 10 (14) 

IMpmig probability of lymphocyte migration 0.3 Assumption 
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IMrwalk random influence on lymphocyte 
movement 

0.5 (14) 

IMspeed Lymphocyte migration speed relative to 
tumor cells 

97 (14) 

IMpprol Lymphocyte proliferation probability 4.623e-04 (14) 

IMpdeath Lymphocyte death probability 1.517e-04 (14) 

IMhypoDeath Scaling factor for lymphocyte death 
probability in hypoxic areas 

1.2 (5) 

engagementDurat
ion 

how many intermed. steps is a killing cell 
engaged? default 48 (=6 hrs) 

48 (14) 

AntiThresh antigenicity threshold for lymphocyte 
activation 

0.3 (14) 

IMinfluxProb probability of lymphocyte influx per round 0.33 (14) 

IMinfluxRate Scaling factor for number of inflowing 
lymphocytes 

1 (14) 

IMrateDynamic Linear scaling factor for number of 
inflowing lymphocytes per round, will be 
multiplied with tumor cell number 

0.04 Assumption 

IMIFNg Production rate of IFNgamma by 
lymphocytes [pg/(cells*h)] 

1.02*1e-4  (15) 

IFNgDecay Rate of IFNgamma decay [1/h] 0.1 (15) 

IFNgRange Range of the effect of the IFNgamma 
produced by a lymphocyte 

2 Arbitrary 

IFNgThresh Threshold of IFNgamma concentration 
above which PD-L1 gets induced on tumor 
cells [pg] 

1e-4 Assumption, chosen so 
that the fraction of PD-
L1 expressing tumor 
cells corresponds to 
plausible values, as 
given in (16) 

DCchemo diffusion/consumption in the stationary 
diffusion-consumption equation for the 
chemotaxis map 

100 (14) 

SCchemo secretion in the stationary diffusion-
secretion equation for the chemotaxis map 

1 

physiologicalOxyg
en 

Oxygen concentration in blood [mM] 0.056 (2) 

oxygenDiffusion Oxygen diffusion coefficient [cm^2/s] 2.5*1e-5 (14) 

oxygenPointCons
umption 

Oxygen consumed by tumor cell  
[cm^2*O2/(cell*s)] 

3.8*1e-13 (14) 

carryingCapacity Carrying capacity given in [Cells] 2.1*10^11/2 (17) 

DCnecro Oxygen diffusion coefficient after 
normalization (division by (3dx)^2  is due 
to the fact that we solve the diffusion-
reaction equations on a sparser grid in 
which each grid cell is equal to 9 grid cells 
of the ABM) 

31.4 oxygenDiffusion/ 
oxygenPointConsumpti
on/carryingCapacity/(3*
dx)^2 

TCnecro total consumption by a single tumor cell 
(because of normalization D/c) 

1 Arbitrary 

hypThresh Oxygen threshold below which we 
assume hypoxia [mM] 

0.056/12 (17) 

ATPThresh ATP threshold below which the tumor cell 
might die [mM] 

0.05* 
(physiologicalO
xygen* 

Assumption, 
similar/proportional to 
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oxygenPointCo
nsumption*29/
5) 

the oxygen threshold in 
(14,18) 

physiologicalGlu
cose 

Glucose concentration in blood [mM] 5 (2) 

glucoseDiffusio
n 

Glucose diffusion coefficient [cm^2/s] 2.6*1e-6 (19) 

glucosePointCo
nsumption 

Glucose consumed by tumor cell 
[cm^2G/(cell*s)] 

1.2*1e-10 In physiological 
conditions ca. 70% of 
uptaken glucose is used 
for anaerobic glycolysis 
(20), so this value is 
calculated based on the 
knowledge of the 
oxygen uptake rate 

DCglucose Glucose diffusion coefficient after 
normalization 

436.8 glucoseDiffusion/ 
glucosePointConsumpti
on/carryingCapacity/(3*
dx)^2 

TCglucose total glucose consumption by a single 
tumor cell (because of normalization D/c) 

1 Arbitray 

glucThresh Threshold of glucose consumption below 
which lymphocytes’ effector functions and 
motility are impaired [mM] 

0.5 (6) 

GlycTumRate Factor by which glucose consumption is 
scaled in case of hypoxia 

9/7 (20) 

protonDiffusion Proton diffusion coefficient [cm^2/s] 1.08*1e-5 (2) 

physiologicalPro
ton 

Proton concentration in blood [mM] 3.98*1e-5 (2) 

pHbuffer Buffering coefficient for proton secretion 5*1e-5 Assumption 

DCproton Proton diffusion coefficient after 
normalization 

0.0012 protonDiffusion/protonP
ointSecretion/carryingC
apacity/(3*dx)^2 

SCproton Proton secretion in the stationary 
diffusion-secretion equation (because of 
normalization D/s) 

1 Arbitrary 

TUprotThresh Proton threshold above which tumor cells 
die with probability 1 [mM] 

1e-3 (21) 

TUARprotThresh Proton threshold above which CA9 
expressing tumor cells die with probability 
1 [mM] 

1.5*1e-3 Assumption, higher than 
TUprotThresh 

TUprotThreshQu
iescence 

Proton threshold above which tumor cells 
become quiescent [mM] 

3.98*1e-4 (21) 

IMprotThresh Proton threshold above which 
lymphocytes die with probability 1 [mM] 

3.98*1e-4 Assumption, higher than 
IMprotThreshQuiescenc
e 

IMprotThreshQui
escence 

Proton threshold above which 
lymphocytes become quiescent [mM] 

2*1e-4 (11) 

smoothRadius Smoothing radius for desmoplastic stroma 
seeds 

3 (14) 

probSeedFibr probability of fibrosis seeding 0.06 (14) 

fibrFrac Size of the fibrotic seed 0.3 Arbitrary 

stromaPerm 0 = stroma not permeable, 1 = fully 
permeable, default very small  

1 Assumption 
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maxCells Maximum allowed size of tumor Inf Assumption 

requireAlive require tumor to be alive for N iterations, 
prevents spontaneous tumor death 

150 (14) 

maxAntigenicity Tumor cell maximum antigenicity 1 Arbitrary 

PDL1SuppProb Probability of T cell supression when 
attacking a PD-L1 expressing cell 

1 Assumption, gets 
reduced by anti-PD1 

PDL1freq Probability of PD-L1 expression by tumor 
cell at simulation begin 

0 or 0.1 Assumption, falls into 
the range of PD-L1 
expression in melanoma 
(16) 

CA9freq Probability of CA9 expression on tumor 
cell 

0.3 (22) 

CA9protons Protons produced due to CA9 on a single 
tumor cell in one iteratin 

2.1*1e-9 Assumption, set so that 
the obtained pH values 
are physiologically 
plausible 

keSLC0111 Rate of elimination of the CAIX inhibitor 
SLC-0111 

log(2)/(11.1/12) (23) 

kaSL0111 Rate of absorption into the serum of the 
CAIX inhibitor SLC-0111 

0.93*12 (23) 

keantiPD1 Rate of elimination of the PD-1 inhibitor 
pembrolizumab 

log(2)/(26*2) (24) 

Suppl. Table 1: Details on parameters for our 3D agent-based model, default values and references. 

One model iteration corresponds to 12 hours and all parameters are scaled accordingly (Please note, that 

all diffusion-reaction eqations are solved in their steady-state, thus, units do not matter as long as they are 

the same for the diffusion and the reaction coefficient). Arbitrary parameters can have any value as they 

linearly scale other parameters or by definition have no influence on the model outcome. Still, they are 

included for better clarity. Parameters labeled “Assumption” were arbitrarily fixed at a biologically plausible 

value. Parameters listed in cursive were present in the model presented in (14), but their values have been 

changed. Parameters listed in bold have been added to the model. 
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Cancer 
 

 

Number 
at risk at 
day 0 
(CAIX 
high) 

Number 
at risk 
at day 0 
(CAIX 
low) 

HR p FDR 3 year 
OS 
(high) 

3 
year 
OS 
(low) 

5 year 
OS 
(high) 

5 
year 
OS 
(low) 

Bladder 
Carcinoma 

147 257 0.73 0.064 100% 0.6 0.45 0.58 0.4 

Breast 
Cancer 

727 362 1.99 0.004** >50% 0.9 0.95 0.8 0.9 

Cervical 
squamous 
cell 
carcinoma 

164 140 1.88 0.017* >50% 0.7 0.8 0.6 0.78 

Esophageal 
Adenocarcin
oma 

60 20 1.92 0.12 100% 0.38 0.63 0.18 0.57 

Esophageal 
Squamous 
Cell 
Carcinoma 

26 55 0.42 0.11 100% 0.85 0.38 0.42 0.18 

Head-neck 
squamous 
cell 
carcinoma 

210 289 1.26 0.11 100% 0.58 0.6 0.5 0.57 

Kidney renal 
clear cell 
carcinoma 

399 131 0.61 0.044* >50% 0.8 0.72 0.76 0.58 

Kidney renal 
papillary cell 
carcinoma 

85 202 2.3 0.009** >50% 0.82 0.92 0.62 0.83 

Liver 
hepatocellula
r carcinoma 

194 176 2.4 2.9e-
6*** 

1% 0.57 0.8 0.4 0.61 

Lung 
Adenocarcin
oma 

255 249 1.72 5e-4*** 10% 0.58 0.72 0.48 0.5 

Lung 
squamous 
cell 
carcinoma 

169 326 0.86 0.36 100% 0.62 0.6 0.58 0.56 

Ovarian 
Cancer 

95 278 0.65 0.01* >50% 0.77 0.61 0.42 0.39 

Pancreatic 
ductal 
adenocarcin
oma 

75 102 1.76 0.007** 50% 0.3 0.5 0.19 0.41 

Pheochromo
cytoma and 
Paraganglio
ma 

45 133 11.8 0.005** 50% 0.86 1 0.86 1 

Rectum 
adenocarcin
oma 

60 105 0.46 0.11 100% 0.84 0.81 0.63 0.43 
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Sarcoma 69 109 1.86 0.005** 50% 0.57 0.73 0.42 0.6 

Stomach 
adenocarcin
oma 

110 261 0.71 0.08 100% 0.57 0.5 0.57 0.4 

Testicular 
Germ Cell 
Tumor 

101 33 0 0.003** 20% 1 0.9 1 0.9 

Thymoma 31 87 3.05 0.16 100% 0.88 0.96 0.88 0.96 

Thyroid 
Carcinoma 

137 365 3.22 0.02* >50% 0.97 1 0.9 0.98 

Uterine 
corpus 
endometrial 
carcinoma 

172 370 1.49 0.075 100% 0.78 0.84 0.77 0.81 

 

Suppl. Table 2: Results of the survival analysis in two cohorts: high CAIX expression vs 

low CAIX expression. FDR denotes the false discovery rate resulting from the determination of 

the best possible cut-off value. P denotes the p-value of the Cox-Mantel (log-rank) test. 
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FIGURE 4.1: Supplementary Figure S1 from An in silico model to study the
impact of carbonic anhydrase IX expression on tumour growth and anti-PD-
1 therapy. Simplified diagrams showing the rules of the ABM that govern the

actions of tumor cells (A), and lymphocytes (B).
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Chapter 5

Carbonic anhydrase IX suppression
shifts partial response to
checkpoint inhibitors into
complete tumor eradication:
model-based investigation

5.1 Introduction

The research presented in [40] was motivated by my second research aim, especially
the study of combination therapies, as explained in section 5.2.1 of this thesis. It is
thus an extension of work presented in [39], informed by the previously obtained
results. While the model presented in the preceding chapter was developed with
the objective of exploring new hypotheses and identifying biomarkers or resistance
mechanisms, here I propose a model designed for further validation of the results
and conclusions derived from the previous modeling approach. Having qualita-
tively confirmed my hypothesis that CAIX-induced acidosis might be a vital resis-
tance mechanism of immunotherapy, and thus, targeting CAIX might reinvigorate
immune response and increase anti-PD-1 therapy effectiveness, I proposed a contin-
uous model aimed at quantitative validation. The continuous model is a simplifica-
tion of the hybrid model, offering fewer opportunities for exploration. However, it
better fits the purpose of quantitative validation, as it has fewer parameters and is
less computationally expensive, facilitating its calibration with the in vivo data pre-
sented in [37]. Moreover, unlike the hybrid model, the new one is mathematically
tractable, allowing for its mathematical analysis and more generalizable conclusions
than the previous numerical simulations.

I was the main investigator in this study, responsible for conceptualization, model
building, mathematical analysis of the model, the performance of numerical simu-
lations, and the interpretation of the results, with guidance from my supervisor. In
addition to elaborating on my second research aim, this publication supports my
second and especially third hypothesis, i.e. the positive effect of combining even
just transient treatment with ICI therapy and CAIX inhibition.
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5.2 Relation of the publication to the research aims of the
thesis

5.2.1 Study the impact of tumoral CAIX expression on the evolution of
the TME and ICI effectiveness in silico, and evaluate it as a combi-
nation therapy target with ICIs

The previous model had quite extensively illustrated the impact of CAIX expression
on the TME. With the new model, on the other hand, I set out to focus on its influence
on ICI effectiveness and potential for a combination therapy target. As an extension
of my previous work, here I investigated its combination with not only anti-PD-1 but
also anti-CTLA-4 therapy. As mentioned in the introduction, combining anti-PD-1
with anti-CTLA-4 increases response rates compared to monotherapies, but it was
not clear, whether adding CAIX inhibition could further increase treatment efficacy.

First, I was interested in the mathematical analysis of the proposed model, to as-
sess its asymptotic behavior (see section 2.1 of [40]). The originally proposed model
consisted of five non-linear ordinary differential equations (see equations (14)-(15)
in [40]). To allow for its phase plane analysis, I decided to simplify the model to
the form presented in equation (16) of [40], which I will refer to as the simplified
model from here on. Here, we assume that all substances are in their steady state.
This approximation is motivated by the fact, that the modeled substances (protons,
IGN-γ) are produced and decay at a much faster rate than cellular actions such as
proliferation occur. Secondly, we ignore the distinction between CC and CSC and
model only cancer stem cells. While this is a substantial modification of the model,
I believe that the conclusions resulting from the analysis of the simplified model are
still of interest, since CSC are the main driver between cancer progression and recur-
rence, and their dynamics critically impact treatment outcomes. However, it should
be noted that the results from the phase plane analysis of the simplified model do
not translate one-to-one to the original model, and only serve as an initial explo-
ration of the model. I proved analytically that this simplified model could have one
or two equilibria, dependent on the parameters. Furthermore, numerical simula-
tions indicated, that CAIX inhibition could vitally change the asymptotic behavior
of the model and have the solutions tend to the tumor-free steady state, whereas
solutions starting from the same initial conditions but with high CAIX expression
stabilized at the steady state corresponding to stable disease. Importantly, this shift
in asymptotic behavior required an abundant immune response. Such a strong im-
mune response can be achieved using ICIs, supporting the notion of combining these
two treatments, in line with my research hypothesis.

These initial results motivated me to study the effect of combination therapy
in the original model. In particular, I wanted to test my third research hypothe-
sis, postulating the positive effect of transiently combining anti-CAIX and ICIs. The
previous simulations had assumed that treatment consistently impacted the model’s
parameters as if it were applied continuously, which is not the case in clinical prac-
tice. Hence, I performed numerical simulations with finite duration treatments fol-
lowed by a long observation period of the tumor volume (see section 2.2. of [40]).
I performed the simulations for various treatment dosages and durations with the
conclusion that CAIX-expressing tumors seem to require a combination of anti-CAIX
and a high enough dose of ICI for a complete and durable response. For monother-
apies, we observed disease recurrence, even after pseudo-elimination during the
treatment window.
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Finally, the model was fitted to pre-clinical data presented in [37] (see section
2.23 of [40]). While the obtained fit seemed good, it should be noted, that this model
fitting is preliminary. Due to the limited data, it was impossible to validate the model
fitting on an independent data set, as I have elaborated in the discussion section of
the paper. Nevertheless, this initial model calibration shows that our model might
be used to reproduce experimental findings and provides some initial parameter
guesses for the numerical simulations performed in this study.

Another interesting, although preliminary observation resulting from the model
simulations was the depletion of CSC in the tumor after CAIX inhibition. This ob-
servation is derived from the model calibration with a small dataset, so it requires
further validation. However, it supports certain experimental observations, as enu-
merated in the discussion section of the publication, and thus constitutes a promis-
ing perspective for further research.

In summary, the publication [40] was motivated by my second research aim and
contributed to answering the second and third research hypotheses of this thesis.
The conclusions derived from the analysis of the presented model require further
validation with a bigger data set, but they support the notion of investigating com-
binations of CAIX inhibition and ICIs in CAIX-expressing tumors as a way of in-
creasing ICI effectiveness.

5.3 The publication
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Abstract: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of solid malig-
nancies, including non-small-cell lung cancer. However, immunotherapy resistance constitutes a
significant challenge. To investigate carbonic anhydrase IX (CAIX) as a driver of resistance, we built a
differential equation model of tumor–immune interactions. The model considers treatment with the
small molecule CAIX inhibitor SLC-0111 in combination with ICIs. Numerical simulations showed
that, given an efficient immune response, CAIX KO tumors tended toward tumor elimination in
contrast to their CAIX-expressing counterparts, which stabilized close to the positive equilibrium.
Importantly, we demonstrated that short-term combination therapy with a CAIX inhibitor and im-
munotherapy could shift the asymptotic behavior of the original model from stable disease to tumor
eradication. Finally, we calibrated the model with data from murine experiments on CAIX suppres-
sion and combination therapy with anti-PD-1 and anti-CTLA-4. Concluding, we have developed a
model that reproduces experimental findings and enables the investigation of combination therapies.
Our model suggests that transient CAIX inhibition may induce tumor regression, given a sufficient
immune infiltrate in the tumor, which can be boosted with ICIs.

Keywords: CAIX; immunotherapy; immune checkpoint inhibitors; mathematical model; combination
therapy; acidosis; resistance

1. Introduction

The advent of immune checkpoint inhibitors (ICIs) was a pivotal turning point in
the history of cancer treatment. Unprecedentedly, monoclonal antibodies blocking the im-
mune checkpoints PD-1 and CTLA-4 even prolong the survival of patients with advanced,
metastatic malignancies [1,2]. Nevertheless, intrinsic or acquired resistance to these drugs
prevents some patients from benefiting from this therapy [3,4]. Identifying the drivers of
this resistance and potential combination therapy targets would allow us to fully harness
the power of ICI treatment by turning non-responders into responders.

In [3,5], the predictive biomarkers of ICI therapy have been comprehensively reviewed,
including PD-L1 expression on cancer cells and other cells in the tumor microenvironment
(TME), tumor mutational burden and other genetic and epigenetic factors, microbiome
composition, IFN-γ signatures, and the composition and distribution of tumor-infiltrating
lymphocytes. Ultimately, the authors concluded that no definite marker distinguishing
responders from non-responders has been identified yet. Furthermore, it is believed that
only a panel of markers would have sufficient predictive power, and the search for potential
drivers of resistance is still ongoing.

In non-small-cell lung cancer, CTLA-4- and PD-1-blocking antibodies have shown
promising anti-tumoral activity, either alone or in combination with chemotherapy [1,6].
Importantly, ICIs induced significant and durable responses in a subset of patients with
chemotherapy-refractory disease [6]. Unfortunately, the response rate across all trials
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was relatively low at around 20% [7]. Among PD-L1+ patients or patients treated with a
combination therapy of anti-PD-1 and anti-CTLA-4, the response rate was higher, but still
more than half of the patients were resistant to the therapy [7], indicating a need for further
investigation of resistance mechanisms.

An emerging factor impacting treatment resistance is TME acidosis, which suppresses
the immune response and selects for more aggressive, treatment-resistant cancer cells,
thereby helping cancer escape immune surveillance [8]. Tumors generally have an acidic
extracellular space, with pH values in the TME amounting to around 6.5–7 [8], partially
due to tumor hypoxia and the cancer cells’ aberrant metabolism. Additionally, cancer
cells express several molecules, such as carbonic anhydrase IX (CAIX), which assist in
the acidification of the TME [9]. These enzymes catalyze the reversible hydration of CO2,
leading to an accumulation of protons [10]. Importantly, they are an attractive treatment
target since they are overexpressed in many cancers, e.g., they are highly expressed in more
than one-third of non-small-cell lung cancers (NSCLCs) [11]. Meanwhile, they are rare
in healthy tissue [12]. Hence, inhibiting them might reinvigorate the immune response
in the TME without causing unwanted side effects in the rest of the body. Currently, a
small-molecule inhibitor of CAIX called SLC-0111 is undergoing clinical trials [13]. Studies
investigating the combination of ICIs and CAIX inhibition, however, are still pre-clinical.
In [14,15], the effectiveness of anti-CAIX CAR T-cells secreting anti-PD-L1 was shown to
decrease tumor size in mice models and prevent metastasis in clear-cell renal cell carcinoma.
In [16], Chafe et al. showed decreased tumor growth in mouse tumor models when
combining it with anti-PD-1 and anti-CTLA-4, unlike anti-CAIX monotherapy or ICI
therapy alone. In [17], we used a computational model to investigate the impact of CAIX
expression on the TME and the effectiveness of anti-PD-1 with anti-CAIX. Our model
simulations suggested that patients with CAIX-expressing tumors would benefit from dual
inhibition with anti-PD-1 and anti-CAIX, regardless of pre-treatment PD-L1 expression,
making it an independent marker.

In this study, we set out to expand on our previous work. Here, we have developed a
differential equation model informed by pre-clinical data. Our main goal was to not only an-
alyze the effectiveness of combination therapy with anti-CAIX, anti-PD-1, and anti-CTLA-4,
as in the previously mentioned studies, but also the durability of the response after stopping
the treatment. Furthermore, given a few realistic assumptions, we were able to analyze
the model’s asymptotic behavior mathematically, which was impossible for the complex
hybrid model presented in our previous study [17]. Finally, we wanted to show that our
model could quantitatively reproduce experimental findings. Thanks to its computational
efficiency and interpretable parameters, the proposed model can be easily calibrated to
represent different solid tumor types and analyze ICI and anti-CAIX effectiveness.

2. Results
2.1. Phase Portrait Analysis Reveals Two Possible Steady States

In order to gain a deeper understanding of the qualitative behavior of our model, we
analytically analyzed the number of steady states of the simplified model (16) and deduced
the following proposition:

Proposition 1. The point (0,0) is a steady state of the system (16). Depending on parameter values,
the system might also have a positive steady state (S∗, ES∗).

Proof of Proposition 1. First, let us assume that S > 0, because otherwise, system (16) is
trivial. Then, let us denote ES by x. From the third equation of system (16), we have

I =
rx
ωS

. (1)
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Substituting this into the second Equation (15), we obtain

L = α + β

( rx
ωS

ζ + rx
ωS

)
. (2)

Now, let us solve the steady-state equation for the second Equation (16). Please note that
the equation for the steady-state solution for protons implies

H =
δ + q + vH0

v
, (3)

hence, H is independent of our variables. Therefore, the last component of the second
equation of system (16) is equal to −constx, where const is a non-negative constant. Hence,
we can omit this part in our calculations by incorporating it in the parameter d. Then,
we have

0 =
dx
dt

⇐⇒ 0 = bµS− dx− amµpx
(

α + β

( rx
ωS

ζ + rx
ωS

))

⇐⇒ 0 = bµS
(

ζ +
rx
ωS

)
− dx

(
ζ +

rx
ωS

)
− amµpx

(
α
(

ζ +
rx
ωS

)
+ β

rx
ωS

)

⇐⇒ 0 = bµS
(

ζS +
rx
ω

)
− dx

(
ζS +

rx
ω

)
− amµpx

(
α
(

ζS +
rx
ω

)
+ β

rx
ω

)

⇐⇒ 0 = −x2 r
ω
(d + amµp(α + β)) + xS

(
bµ

r
ω
− dζ − amµpαζ

)
+ bµζS2

(4)

By treating the last Equation (4) as a quadratic function of x, we can determine the
number of candidates for the steady states. In fact, we know that we have two roots, since

∆ = S2
(

bµ
r
ω
− dζ − amµpαζ

)2
+ 4bµζS2 r

ω
(d + amµp(α + β)) > 0. (5)

From Vieta’s formula, the roots have opposite signs:

x1x2 = − bµζS2

r
ω (d + amµp(α + β))

< 0. (6)

Finally, the equations for the roots are

x1,2 =
−S
(
bµ r

ω − dζ − amµpαζ
)
± S

√(
bµ r

ω − dζ − amµpαζ
)2

+ 4bµζ r
ω (d + amµp(α + β))

−2 r
ω (d + amµp(α + β))

= c1S,

(7)

where c1 > 0 for the positive root, since we assumed S > 0.
Now, let us look at the first equation of system (16). For simplicity purposes, let us

transform the third equation of system (16) into

I =
rE
ω

. (8)

Hence, we have

L = α + β

(
rE

ζω + rE

)
(9)
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and we can calculate the second nullcline:

0 =
dS
dt

⇐⇒ 0 = φS
(

1− S
K

)
− avcmµ(1− pL)x

⇐⇒ x =
φS
(

1− S
K

)

avcmµ
(

1− p
(

α + β rE
ζω+rE

))

(10)

Since we are looking for steady states, we can assume that E ≡ const, i.e., Equation (10)
is equivalent to

x = c2S
(

1− S
K

)
, (11)

where c2 is a positive constant. From (7) and (11), we deduce that there are two possible
phase portraits, which are dependent on the values of c1 and c2. In particular, the S-
coordinates of the steady states are the solutions of the equation

c1S = c2S
(

1− S
K

)
. (12)

From Equations (12) and (7), (0, 0) is one of the steady states. The other one is positive
if and only if

S =

(
1− c1

c2

)
K > 0

⇐⇒ c1 < c2.
(13)

Concluding, our system (16) can have either one or two non-negative steady states.
The steady state at the origin always exists. The existence of the positive steady state
(S∗, ES∗) depends on the model’s parameter values in a complex way.

Having inferred the possible existence of two qualitatively different phase portraits,
we wanted to investigate whether they were attainable for plausible biological parameters.
For illustration purposes, we set the free parameters to the values obtained from the data
fitting procedure (see Table 1), with the exception of the parameters b and eta. The first
reason for modifying these parameters is that complete tumor eradication, i.e., one of the
phase portrait types, was not observed in the data that we used for model calibration.
Hence, to obtain this phase portrait, we increased the T-cell infiltration to b = 3× 104.
Please note that this may correspond either to a more immunogenic tumor than the one
investigated in the in vivo experiments, or an immune response that had been boosted by
immunotherapy. Furthermore, we increased the impact of TME acidification on the T-cell
population to η = 106 to widen the distance between the steady states and make the figure
more legible. However, the phase portraits were qualitatively the same for smaller values
of the parameter eta, as shown in Figure 1c. The zero and the positive equilibrium exist for
all simulated values of parameter η. With decreasing eta, the S-coordinate of the steady
state decreases toward zero. Due to the large ranges on the phase portrait axes, we opted
for a large η-value for the exemplary phase portrait to ensure that the steady states were
easily distinguishable on the plot.

We were able to obtain both types of phase portraits by only manipulating the param-
eter denoting CAIX expression on cancer cells. As shown in Figure 1, we can obtain two
non-negative steady states for the parameter value q = 7.6258× 10−13, corresponding to
the acidification of the TME to ca. 6.6, which falls within the boundary values reported in
the literature [18]. The solutions tend to the positive equilibrium. On the other hand, when
simulating a CAIX KO tumor, i.e., setting CAIX = 0, we obtain one asymptotically stable
steady state at the origin, indicating the elimination of the CAIX KO tumor.
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Figure 1. Phase portraits of the simplified model (16). Black dots denote the steady states. The colored
lines represent distinct solutions starting from the initial conditions, which are marked with diamond
shapes. (a) Phase portrait of the CAIX-expressing tumor, including an inset, which shows the behavior
of the solutions starting close to the steady states. (b) Phase portrait of the CAIX-expressing tumor.
(c) Influence of parameter eta on the S-coordinate of the steady state.

2.2. Synergistic Combination Therapy with Anti-CAIX and Immune Checkpoint Inhibitors

In the previous section, we showed an example of how CAIX KO tumors might have
a drastically different outcome than CAIX-expressing tumors, especially in the presence
of a strong immune response. However, in clinical practice, therapy is usually not given
indefinitely. Motivated by the promising initial results obtained for the simplified model,
we investigated transient combination therapy with anti-CAIX and immune checkpoint
inhibitors using the full model (14). We calibrated the model with the parameters resulting
from the data-fitting procedure (see Table 1) and standardized the initial conditions by
setting inocCells = 0.1 to facilitate therapy comparison. Then, we simulated different
treatments on this exemplary tumor. First, we let the tumors grow for twenty days prior to
initiating any treatment. Then, the treatment with parameters d3 = 1, d1 = 0.4, and d2 = 4
was simulated for a finite duration. Finally, we observed tumor growth until day 200 after
inoculation. The control tumor (treatment-free) grew until reaching a maximum volume of
1179 mm3 on day 40.
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Figure 2a shows the effects of 2-week treatment simulations. Monotherapy with
anti-CAIX, combination therapy with two immune checkpoint inhibitors (anti-PD-1 and
anti-CTLA-4), as well as combination therapy with anti-CAIX and anti-PD-1 resulted
in a short decrease in tumor volume, followed by renewed growth. The tumor growth
accelerated upon stopping treatment, and the tumor eventually reached the same size as the
control tumor. Combining anti-CAIX and anti-CTLA-4 resulted in tumor recurrence about
2 weeks after treatment suspension, even after seemingly eradicating the tumor during the
therapy window. On the other hand, combining anti-CAIX with both immune checkpoint
inhibitors decreased tumor size substantially during the treatment time window, and this
decrease in size continued after therapy ended, resulting in complete tumor elimination.

To ensure that the scenario presented above was not just a result of short treatment
duration, we simulated the same treatments for a longer time period. In Figure 2b, we
can see the effect of the same treatments given for 90 days. Here, we can infer that a
lack of complete and durable response for treatments that did not combine both anti-
CAIX and ICI was not due to the short treatment window. The increased treatment
duration induced tumor volume stabilization during treatment. However, tumor growth
immediately resumed after stopping the treatment, reaching the size of the control tumor.
Hence, prolonging the treatment did not impact the long-term outcome. Conversely,
longer treatment with a combination of anti-CAIX and anti-CTLA-4 led to a response that
continued after stopping treatment, as opposed to the two-week treatment.

These observations motivated us to hypothesize that in the presence of sufficient CAIX
expression that leads to a significant acidification of the TME, combining anti-CAIX with a
high enough dose of ICI is necessary for a complete and durable response, regardless of ICI
type. To initially test this hypothesis, we analyzed the long-term outcomes of combination
therapy with varying doses of anti-PD-1 and anti-CTLA-4 in CAIX-expressing and CAIX
KO tumors. Treatment was again given for three months (90 days) and tumor volume was
measured on day 200 after inoculation, i.e., another 90 days after the end of therapy. In
Figure 2c, we can see that, in fact, no dose of ICI elicited durable response in the CAIX-
expressing tumors. All therapy regimens resulted in tumor growth to virtually the same
size. On the other hand, as shown in Figure 2d, monotherapy with either ICI or combination
therapy with both ICIs resulted in a lack of tumor regrowth after treatment end in CAIX
KO tumors, provided that the ICI dose was sufficiently high.

2.3. Model Fitting

Finally, we wanted to investigate whether our model could correctly replicate ex-
perimental findings. We were able to obtain a good fit for the in vivo data, as shown in
Figure 3a,b. The final values of the free parameters are shown in Table 1. The loss function
was 1.32. Figure 3a confirms the conclusions in [16] that knocking out CAIX expression
significantly decreases tumor growth. However, the in vivo experiments showed only the
beginning of the tumor growth and did not show any sign of stabilization of the tumor vol-
ume. To gain a deeper understanding of the system’s behavior, we performed simulations
with the calibrated model for longer time spans. Figure 4c shows that our model confirmed
that CAIX acidifies the TME, lowering the pH steady state from approximately 7 to 6.6.
Furthermore, Figure 4a,b indicate that the tumor volume and the number of infiltrating
T-cells stabilized after around 60 days at ca. 759 mm3 for the CAIX KO tumor and 1179 mm3

for the CAIX-expressing tumor. Strikingly, there was a significant difference in the ratio
of CSC to CC between both simulations, with the CAIX KO tumor having a decreased
CSC fraction.
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Figure 2. Comparison of the effectiveness of treatment combinations for shorter and longer durations.
The lineplots correspond to treatment with the parameters d3 = 1, d1 = 0.4, and d2 = 4. Vertical lines
mark treatment start and end. The heatmaps show the tumor volume at day 200 for increasing doses
of the combination treatment with anti-PD-1 and anti-CTLA-4. (a) Long-term outcome of two weeks
of therapy. (b) Long-term outcome of 3 months of therapy. (c) Volumes of CAIX-expressing tumors
for various anti-PD-1 and anti-CTLA-4 doses on day 200 after inoculation. (d) Volumes of CAIX KO
tumors for various anti-PD-1 and anti-CTLA-4 doses on day 200 after inoculation.
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Figure 4. Comparison of a CAIX-expressing and a CAIX KO tumor: (a) Number of cells in the model
with CAIX expression. (b) Number of cells in the CAIX KO model. (c) Comparison of the pH level
between the CAIX-expressing (Ctrl) and the CAIX KO models.
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Table 1. Model parameter values resulting from the data-fitting procedure. Asterisks denote
substituted variables.

Parameter Name Value Lower Bound Upper Bound

a∗ = amµ 834.16 0 103

b∗ = bµ 5.821× 103 0 6× 103

eta 2.485× 103 0 106

n 0.799 0 10
q 7.6258× 10−13 5× 10−13 3× 10−12

d1 0.028 0 1
d2 0.011 0 20
d3 0.066 0 1

initCSCrat 3.083× 10−5 0 1
icctrl 0.210 0 1

iccaixko 0.336 0 1
icv 0.044 0 1
ics 0.027 0 1
icpc 0.007 0 1
icpcs 0.004 0 1

3. Discussion

Herein, we have introduced a new mathematical model of tumor–immune interactions
and applied it to investigate the effectiveness of immunotherapy and CAIX inhibition. Our
model suggests a synergistic combination of anti-CAIX with immune checkpoint inhibitors.
Importantly, we have shown that immunotherapy alone or anti-CAIX monotherapy might
lead to tumor recurrence after treatment interruption. On the other hand, combining im-
mune checkpoint inhibitors with anti-CAIX might change the TME in favor of the immune
cells and elicit a complete and durable response. However, this required a sufficiently
boosted immune response. Combining low doses of immunotherapy with CAIX suppres-
sion resulted in tumor regrowth after stopping the therapy. Interestingly, for low ICI doses
combined with CAIX inhibition, we observed non-obvious simulation results, such as
pseudo-elimination, followed by disease recurrence long after ending treatment.

Our main finding was that adding short-term CAIX inhibition can turn partial and
temporary responses to immune checkpoint inhibitors into a response that continues
after treatment until tumor eradication. This is a significant observation since immune
checkpoint inhibitors have relatively low response rates, and improving them would
fundamentally change the outlook for countless cancer patients. Importantly, we observed
this synergistic combination only for tumors with efficient immune responses. Hence,
choosing the optimal ICI dosage remains vitally important. A limitation worth noting is
that our model is not defined in the absence of a tumor. Due to numerical precision, some
of our simulations in Figure 2 reached a tumor volume of zero, forcing a premature end
of the simulation to avoid division by zero. Therefore, we cannot predict what happens
afterward, so we cannot state for sure how durable the response would be. Regardless, we
can see that in some cases of combination treatment with anti-CAIX and a high enough dose
of ICIs, the treatment response continues after treatment, as opposed to monotherapies,
showing a synergistic instead of just an additive effect. These initial simulations imply
that a combination of ICIs and anti-CAIX might lead to a more durable response in CAIX-
expressing patients and allow for a more relaxed treatment schedule.

Moreover, we have proven analytically that a simplified yet realistic model version
may have either one or two steady states, depending on the parameters. One of the
equilibria denotes tumor eradication, while the other corresponds to stable disease. Nu-
merically, we have shown that CAIX expression has a pivotal impact on the stability of
the tumor-free equilibrium. Provided an abundant immune response, which might be
achieved via immunotherapy, CAIX KO tumors tend to the zero equilibrium, whereas
their CAIX-expressing counterparts stabilize at the positive steady state. Importantly, the
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simplified version of the model overcomes the problem of instability close to zero values of
tumor volume.

Another interesting observation was that the data-fitting procedure revealed a lower
CSC fraction in the CAIX KO tumor. This was probably due to the subdued immune
response in the acidic TME, which diminished T-cell-mediated cancer cell killing. Therefore,
the apoptotic death of CCs had a graver impact on the number of CCs in the acidic tumor
than T-cell-mediated killing. This observation was based on calibrating the model via a
small data set, so we cannot draw any definite conclusions. Nevertheless, it shines a light on
an interesting research topic. CSCs are believed to be the main drivers of tumor progression
and treatment recurrence, and yet they seem to be resistant to most conventional treatments.
In lung cancer, for example, chemotherapy failure is commonly believed to be due to
CSC resistance [19]. Interestingly, some pre-clinical studies show that CAIX inhibition
sensitizes previously resistant tumor cells to chemotherapy. In [20], Lock et al. observed
reduced lung cancer growth and metastasis, when combining paclitaxel with anti-CAIX.
If the effectiveness of CAIX inhibition on CSC elimination were confirmed, it would be a
promising combination therapy target with chemotherapy. Lock et al. have reported CSC
depletion due to CAIX inhibition in orthotopic breast tumor models, but also a lack of CSC
expansion in vitro when coupled with CAIX inhibition, indicating that immune-unrelated
mechanisms are at play as well [20]. However, the impact of the different mechanisms of
CSC depletion via CAIX is not yet fully elucidated. For future research, our model could
be expanded to allow for further investigation of the intricate relationships between CSCs
and CAIX.

Finally, our model can reproduce experimental in vivo data with and without treat-
ment. It should be noted that our model is now only calibrated with a small data set,
produced by taking the average results instead of the individual repeats from the in vivo
experiments. This was sufficient for our exploratory analysis that aimed at establishing
hypotheses concerning the combination of CAIX inhibition and ICI therapy and initially
validating the model. More data concerning tumor growth in CAIX expressing and CAIX
KO tumors are needed to further validate the model. In particular, currently we do not
know whether our model generalizes well to unseen data. If more data were available, we
could test the prediction capabilities of the model and refine it, e.g., by using regularization
techniques to minimize the danger of overfitting (see, for example, ref. [21] for an overview
of techniques that can be used to select the most vital parameters for the data-fitting proce-
dure). We see two possibilities for testing the model’s prediction capabilities. For example,
longer data sets could be used to calibrate the model on initial time points and then test
its prediction accuracy on unseen data points. Alternatively, if data from the individual
repeats were available, it would be possible to calibrate the model using a subset of the data
sets, and then validate it using the remaining ones. Due to this lack of data, we have opted
to model the treatments by assuming a constant inhibition effect for the entire treatment
duration. In reality, drugs are removed from the body and their effect tapers off over time.
If our model were to be used to compare different treatment schedules and identify optimal
treatment protocols, the pharmacokinetics of the drugs should be included in the equations.
However, this would increase the number of model parameters and thus require more data
for calibration.

4. Materials and Methods
4.1. Differential Equation Model Formulation

Our model’s domain is the tumor itself. Therefore, the variables describing cancer
cells denote volumes, whereas other variables describe the density or concentration of the
described cell type or substance in the tumor. Let C and S denote the volume of cancer
cells and cancer stem cells (mm3), respectively. Let E denote the density of active T-cells
in the tumor ( cells

mm3 ). Let I and H denote the IFNγ and proton concentrations in the tumor
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( pg
mm3 , mol

mm3 ), respectively. Let the fraction of PD-L1-expressing cancer cells be denoted by L.
Finally, assuming that T-cells do not significantly contribute to the tumor volume, let

V(t) = C(t) + S(t)

be the tumor volume. This assumption is a certain simplification based on the fact that
the diameter of T-cells is much smaller than that of cancer cells, and that cancer cells
outnumber lymphocytes in the tumor. Then, instead of modeling the temporal changes in
the densities E, I, and H, we can model the temporal changes in the number of cells and
molecules by multiplying the densities by the tumor volume, obtaining equations with
respect to the products E ·V, I ·V, and H ·V . Hence, we consider the following system of
differential equations:





dC
dt

= f (C) + σ f (S)− avcmµ(1− p(1− d1)L)C · E− nC

dS
dt

= (1− σ) f (S)− avcmµ(1− p(1− d1)L)S · E
dE ·V

dt
= bµ(1 + d2)V − dE ·V − amµp(1− d1)LV · E

− ηE ·V max
(

1− Hthresh
H

, 0
)

dI ·V
dt

= rE ·V − wI ·V
dH ·V

dt
= δ(C + S) + q(1− d3)(C + S)− v(H − H0) ·V,

(14)

where

f (X) = φX ·
(

1− V
K

)
,

and L = α + β
I

ζ + I
, β <= 1− α

(15)

for X = C or X = S. The parameters pertaining to treatment effectiveness (di for i = 1, 2, 3)
or CAIX expression (q) are assumed to be non-negative. All other parameters are positive.
Moreover, we assert V > 0, because the system assumes tumor existence.

The model is based on the following assumptions:

1. Tumor growth Tumor growth is logistic with the carrying capacity K. The model
differentiates between cancer non-stem cells (denoted in the manuscript as CCs) and
cancer stem cells ( denoted as CSCs). CSCs can only be killed by immune cells,
whereas CCs experience apoptosis with the rate n [22]. CSCs divide asymmetrically
with rate σ and symmetrically otherwise.

2. Tumor–immune interactions T-cells’ infiltration is proportional to the tumor volume,
and their number EV decreases exponentially due to cell death. They attack and kill
cancer cells at a rate proportional to their density in the tumor, as proposed in [23].
Notably, this is a spin on the classical Kuznetsov-type interactions as presented in [24],
where tumor cell killing is proportional to the product of the number of tumor cells
and T-cells. We believe that our modification suits our needs better than the original
interaction term. In particular, let us consider the scenario in which we compare two
tumors consisting of the same number of CCs and T-cells. Let us assume further
that one of the tumors also has a large population of CSCs, while the second has
none. If we used the original Kuznetsov-type term, the CC decay due to interactions
with T-cells would be the same in both tumors. On the other hand, in our model, the
decay of CCs is smaller in the tumor with CSCs, since the T-cell density is smaller in
this tumor. This seems more plausible, as the lymphocytes are then more likely to
attack CSCs instead of just CCs. However, our model tacitly assumes that the tumor
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infiltration by lymphocytes is not over-saturated, i.e., the interactions between T-cells
and cancer cells are not limited by a lack of cancer cells. In particular, T-cell decay
due to interactions with cancer cells depends only on the number of T-cells. Finally,
only cancer cells expressing MHC class I on their surface are recognized and attacked
by T-cells. Moreover, the immune response is higher for tumors with a higher tumor
mutational burden. Therefore, the rate of tumor cell killing is equal to amµ, where
a indicates the interaction rate between tumor and immune cells, m the fraction of
cancer cells expressing MHC class I, and µ quantifies TMB, as proposed in [25].

3. PD-1-PD-L1 pathway Tumor cell killing by immune cells is inhibited via the binding
of PD-1 and PD-L1, which induces T-cell anergy. We assume that the fraction of
PD-1-expressing cells is constant and equal to p. The expression of PD-L1, however,
can be either constitutive or adaptive, i.e., induced by IFNγ as a way of escaping the
immune response [26]. We assume that the fraction of cancer cells with constitutive
PD-L1 expression is constant and equal to α. Adaptive PD-L1 expression is dynamic
and bounded from above by the parameter β.

4. Substances in the TME IFN-γ is produced by active lymphocytes with rate r and
decays naturally with rate ω. Protons are produced due to cancer cell metabolism
with rate δ and due to CAIX expression with rate q. Outside of the tumor, we assume
a physiological pH. The flux of protons into and out of the TME is proportional to the
difference between the pH in the TME and the physiological pH. Immune cells that
are exposed to acidosis die. The lower the pH, the greater the induced death rate.

Additionally, the model considers treatment with three inhibitors: anti-CAIX, anti-PD-
1, and anti-CTLA-4. The treatment is modeled with the following assumptions:

1. Anti-CAIX suppresses CAIX expression by the fraction d3.
2. Anti-PD-1 suppresses PD-1 expression by the fraction d1.
3. Anti-CTLA-4 is mainly responsible for reinvigorating early T-cell activation in the

lymph nodes, which we include in our model by increasing lymphocyte influx by the
rate d2.

For qualitative analysis, we consider a simplified version of the model, which is two-
dimensional and allows for a phase portrait analysis. Here, we assume that all cancer cells
are stem cells. The reason for choosing CSCs instead of CCs is that those are the cells that
are crucial to treatment success or failure. Moreover, since the production and decay of
protons and IFN-γ are much faster than cell actions, we may assume that protons and
IFN-γ are in their steady states. For simplicity purposes, we will analyze the treatment-free
version of the model, but please note that the phase portrait analysis also works for the
model that includes treatment. In this case, the effect of treatment can be included in the
parameters b, p, and δ. The treatment-free simplified version of the model looks as follows:





dS
dt

= f (S)− avcmµ(1− pL)S · E,

dE · S
dt

= bµS− dE · S− amµpLE · S− ηE · S max
(

1− Hthresh
H

, 0
)

0 = rE · S− wI · S
0 = δS + qS− v(H − H0) · S.

(16)

4.2. Model Calibration

Most of the model’s parameters were calibrated with values found in the literature,
see Table 2. However, a few parameters could not be determined from the literature
and were denoted as free parameters. To estimate their value, we fitted our model to
experimental data presented in [16]. In particular, we took average data representing the
growth of B16F10 cell lines with and without CAIX expression, as well as the growth of
four treatment cohorts: cells treated with the CAIX inhibitor SLC-0111 (aCAIX), anti-PD-1
and anti-CTLA-4 (ICI), combination therapy of anti-CAIX, anti-PD-1, and anti-CTLA-4
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(aCAIX+ICI) and a treatment-free control group (TF). Tumor volume was measured on
days 6, 8, 11, 13, and 15 when comparing CAIX-expressing and CAIX KO cell lines, and
on days 10, 12, 14, 17, and 19 for the comparison of different treatments. This yielded
six data sets of five data points each. In the in vivo experiments, 5 × 105 tumor cells
in 100µL PBS were inoculated subcutaneously onto the back of female C57Bl/6J mice.
In our in silico simulations, we assume that only the fraction inocCells of these 5× 105

tumor cells initiates the tumor and that a fraction CSCrat of these initiating tumor cells
are CSCs. Model calibration was performed based on all data sets simultaneously. All
parameters except inocCells were asserted to be the same for each data set. We allowed
the fraction inocCells to be different for each data cohort to account for the variability
of inoculation effectiveness and initial conditions in distinct experiments. In our model,
CAIX suppression was modeled by setting the parameter CAIX to zero. Similarly, lack of
treatment was modeled by setting the appropriate treatment parameter to zero (d1, d2, d3).
Fitting our model to data was performed using the MATLAB function lsqnonlin, i.e., using
the least squares method. This function performs simultaneous fitting of all parameters
using a subspace trust region method. As the loss function, we took the sum of squares

of the residuals, scaled by the data values, i.e., loss = ∑n
i=1

(
yi−ŷi

yi

)2
, where yi denotes the

actual data value, ŷi denotes the volume calculated from the model, and n = 30 is the
number of data points. Data fitting was performed 1000 times by sampling the initial values
of the parameters from a multivariate uniform distribution bounded by the upper and
lower bounds of the parameter space. The fit with the lowest loss function was selected.

Table 2. Model parameters. An empty value column denotes free parameters.

Par Interpretation Value Unit Source

φ
maximal rate of tumor

cell growth
24

17.2 day−1 [27]

K carrying capacity for
tumor cells 1200 mm3 permitted tumor

volume limit [16]

σ
probability of

asymmetric division 0.42 - [17]

a
interaction rate

between tumor cells
and TILs

- day−1 free parameter

vc
volume of one tumor

cell 6.2× 10−6 mm3

cell [25]

m mean MHC class I
expression 2.3% - [25]

µ

antigenicity strength
(single nucleotide

variations)
908 - [25]

p mean PD-1 expression
by TILs 54% - [25]

n tumor cell apoptosis
rate - day−1 free parameter

b infiltration rate of
T-cells into TME - cells

mm3∗day free parameter

d apoptosis rate of T-cells 0.406 day−1 [25]

η
rate of T-cell death due

to acidosis - day−1 free parameter

r rate of IFNγ
production 24.48× 10−4 pg

cell∗day [17]
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Table 2. Cont.

Par Interpretation Value Unit Source

ω rate of IFNγ decay 2.4 day−1 [17]

δ
rate of proton

production due to
tumor cell metabolism

3× 10−13 mol
mm3∗day

assumption to yield
realistic pH values

q
rate of proton

production due to
CAIX expression

- mol
mm3∗day free parameter

v rate of proton flux into
and out of the TME 5 day−1 assumption to yield

realistic pH values

H0
proton concentration at

physiological pH 3.98 × 1 ×10−14 mol
mm3

Hthresh
proton concentration

equivalent to pH = 6.7 2 × 1 ×10−13 mol
mm3 [17]

α
constitutive PD-L1

expression 0.1 - [17]

β
rate of adaptive PD-L1

expression 0.1 - assumption, < 1− α

ζ saturation constant 0.01× 10−3 pg
mm3 assumption

d1 effect of anti-PD-1 - - free parameter

d2 effect of anti-CTLA-4 - - free parameter

d3 effect of anti-CAIX - - free parameter

CSCrat ratio of CSC at
inoculation - - free parameter

inocCells ratio of inoculated cells
that initiates the tumor - - free parameter

5. Conclusions

Here, we have presented a new differential equation model of the impact of acidity
and CAIX expression on tumor–immune interactions. Initial calibration with pre-clinical
data showed that the model can accurately replicate experimental findings. Analytical
and numerical analysis implicates that a combination of CAIX suppression with boosted
immune response, e.g., via immune checkpoint inhibitors, is synergistic. Importantly, it can
turn a partial response to monotherapies that leads to immediate recurrence after treatment
end into a complete response that continues after treatment. In the future, our model
could be calibrated with more data to further validate it, investigate the impact of CAIX
expression on cancer stem cell dynamics, and compare treatment protocols. In particular,
as of now, the model has only been calibrated with murine data, which does not always
translate to human studies, so further investigation of these findings is needed.
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Chapter 6

Cellular plasticity upon proton
irradiation determines tumor cell
radiosensitivity

6.1 Introduction

This part of my thesis deals with the challenge of understanding the role of the het-
erogeneous TME in radioresistance, corresponding to my third research aim and
fourth research hypothesis. In particular, in [56], we investigated the impact of X-ray
and proton irradiation on tumor heterogeneity and cancer stem cell dynamics in the
tumor. As mentioned in the introduction, CSC are part of the TME, contributing to
its heterogeneity due to their nonhomogeneous distribution in space and their plas-
ticity, i.e., the ability to dynamically acquire and lose their stemness. This plasticity
can be, among others, induced by irradiation and thus constitutes a potential ra-
dioresistance driver. Therefore, understanding this cellular plasticity and eliminat-
ing CSC in the tumor is of utmost importance for a durable and complete response.
My role in [56] was to investigate the differences in cellular plasticity between the
two irradiation types and their CSC-removing potential using mathematical model-
ing.

Hence, I proposed a differential equation model of cancer cell plasticity, as pre-
sented in the methods subsection titled "Mathematical modeling of cancer cell plas-
ticity upon irradiation". Moreover, I calibrated the model (see supplementary table
S1), fitted it to in vitro data which was obtained by my co-workers (Figure 2B in [56]),
and was responsible for the interpretation of the model simulation’s results. I have
also qualitatively analyzed the model to show the importance of including reverse
plasticity events in the modeling framework. Furthermore, I have written the first
draft of the parts of the manuscript that deal with the differential equation model,
including the methods subsection "Mathematical modeling of cancer cell plasticity
upon irradiation", the results subsection "Mathematical modeling distinguishes pro-
ton from photon irradiation through plasticity events", and parts of the discussion.
Finally, I am also the author of figure 2, showing a diagram representation of the
mathematical model, as well as the data fitting results, and supplementary figure
S2, which additionally explains the mathematical framework used in this study.
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6.2 Relation of the publication to the research aims of the
thesis

6.2.1 Model and analyze the influence of cancer cell plasticity on tumor
heterogeneity and the effectiveness of X-ray and proton radiother-
apy.

My co-workers analyzed the dynamics of putative stem cell markers such as ALDH
after irradiation using flow cytometry analysis, observing heterogeneous dynamics
but finding no significant differences between photon and proton irradiation (Fig.
1A) in [56]. Moreover, they analyzed the effects of proton irradiation on putative
stem populations and identified ALDH+ and ALDH- cells’ survival fraction and
RBE of proton radiotherapy (fig. 1D and 1E in [56]). However, the performed ex-
periments were only able to capture the final effect of both irradiation types on the
putative CSC population identified via CSC markers such as ALDH1, without il-
lustrating the influence on plasticity events. I wanted to dive deeper and analyze
whether the radiation types differed in their impact on either plasticity event type,
while not having a statistically significant final effect on the ALDH+ population, as
shown in figure S1A in [56]. Hence, I proposed a model that aimed to elucidate dif-
ferences between both irradiation types that could not be derived immediately from
the experimental data, in line with my fourth research hypothesis.

The proposed differential equation model considers CC and CSC and their plas-
ticity. The model is illustrated by figures 2A and S2 in [56] and formally described in
the methods subsection "Mathematical modeling of cancer cell plasticity upon irra-
diation". I have derived the model from previously proposed and validated agent-
based models of cellular plasticity [98], [99]. These computational models were not
suitable for my research aim due to the lack of sufficient data to calibrate an agent-
based approach. The available data was in time series format (see Fig.1A in [56]),
which can be approximated using ODE models. Furthermore, my research aim of
comparing plasticity was not inherently spatial or exploratory, justifying the use of
an agent-based model, so I decided to derive a differential equation model for this
task, that had fewer parameters to calibrate, lower computational complexity, and
was mathematically tractable. In accordance with the previously introduced models,
we consider symmetric self-renewal and asymmetric CSC division that contribute to
tumor heterogeneity regardless of plasticity. Likewise, we assume that CC can only
divide a finite amount of times due to replication-dependent telomere shortening
[100], whereas CSC proliferation capacity is unlimited [101]. Additionally, CC may
undergo apoptosis, whereas CSC do not [102]. Similarly, we assume that CSC are
protected from irradiation-induced damage, to simulate their enhanced radioresis-
tance. In contrast to the previously proposed models, we only consider irradiation-
induced plasticity, so only damaged cells undergo plasticity events. Therefore, our
model has distinct variables for irradiated and non-irradiated cells. Additionally,
to consider the finite proliferation capacity within the setting of an ODE model, we
have to distinguish CC by their remaining division attempts. Hence, our final model
has 2

(
pcap + 1

)
variables, where pcap denotes the default proliferation capacity of a

cancer cell that has not divided yet. Finally, our model considers mutations of CC
that repair irradiation-induced DNA damage and can turn damaged CC into un-
damaged CC over time [103].

After partially calibrating the model with in vitro data presented in [56] and data
from the literature (see supplementary table S1 in [56]), I fitted the model to the flow
cytometry analysis of ALDH activity data, as presented in fig. 1A in [56]. Details
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of the data fitting procedure can be found in the methods section of [56]. Then, I
compared the obtained parameters for each treatment and analyzed the differences
in parameter values. As the residuals were not normally or even symmetrically dis-
tributed, the assumptions of the paired t-test or the Wilcoxon signed-rank test were
not met, so I used the sign test. This analysis revealed a lower rate of plasticity events
after proton irradiation than after photon irradiation (p-value=0.03, see supplemen-
tary table S1). That is, the model simulations indicate that CC acquire stemness less
frequently after proton irradiation than after photon irradiation, which could par-
tially explain the enhanced therapeutic potential of proton over photon irradiation,
which is reflected in the RBE of 1.1. for proton therapy [66]. Furthermore, we ob-
served that we could not fit our model to the in vitro data when ignoring reverse
plasticity events (i.e. setting the parameter v to zero). In fact, as demonstrated in
the methods section, we were able to analytically prove that the model had to in-
clude reverse plasticity events to reproduce a non-monotonic trend commonly seen
in the data: an at-first decreasing ALDH+ ratio that later increases. This suggests
that reverse plasticity events were crucial to our modeling and play a vital role in
CSC dynamics after irradiation.

In conclusion, in [56] I proposed a mathematical model of radiation-induced can-
cer cell plasticity and analyzed its impact on the CSC fraction in the tumor, in line
with my third research aim. My model shed some light on the differences between
the impact of two types of irradiation on cellular plasticity, which could not be in-
ferred immediately from the experimental data. Hence, this supports my fourth
research hypothesis, that mathematical modeling can complement biological exper-
iments and elucidate the differences between proton and photon irradiation. The
conclusions derived from the modeling are significant, as they underline the impor-
tance of the impact of bi-directional plasticity events on CSC dynamics and aid in
explaining the putative higher therapeutic potential of proton radiotherapy. Further-
more, model simulations indicate that cellular plasticity is an interesting treatment
target, and reducing the occurrence rate of plasticity events could increase radiore-
sponse rates.

6.3 The publication
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SUMMARY

Proton radiotherapy has been implemented into the standard-of-care for cancer patients within recent years.
However, experimental studies investigating cellular and molecular mechanisms are lacking, and prognostic
biomarkers are needed. Cancer stem cell (CSC)-related biomarkers, such as aldehyde dehydrogenase
(ALDH), are known to influence cellular radiosensitivity through inactivation of reactive oxygen species,
DNA damage repair, and cell death. In a previous study, we found that ionizing radiation itself enriches for
ALDH-positive CSCs. In this study, we analyze CSCmarker dynamics in prostate cancer, head and neck can-
cer, and glioblastoma cells upon proton beam irradiation. We find that proton irradiation has a higher poten-
tial to target CSCs through induction of complex DNAdamages, lower rates of cellular senescence, andminor
alteration in histone methylation pattern compared with conventional photon irradiation. Mathematical
modeling indicates differences in plasticity rates among ALDH-positive CSCs and ALDH-negative cancer
cells between the two irradiation types.

INTRODUCTION

The rationale for the use of protons in radiotherapy is based on

their distinct physical characteristics, allowing a more precise

dose deposition and thus a better therapeutic ratio in comparison

with conventional photons (Tanner et al., 1967; Wilson, 1946). In

this context, proton beam therapy is predominantly used for tu-

mors near organs at risk and in pediatric patients (Tseng et al.,

2017;Weber et al., 2018). However, knowledge regarding the bio-

logical effects of proton therapy is still limited and controversial.

Of particular importance for treatment success is an effective

targeting of cancer stem cells (CSCs), as they possess unlimited

self-renewal capacity and differentiation potential (Peitzsch

et al., 2019; Reya et al., 2001). Markers associated with a higher

likelihood to identify cells with stemness characteristics include

transmembrane glycoproteins CD133 and CD44, chemokine

C-X-C motif receptor 4 (CXCR4), and the aldehyde dehydroge-

nase (ALDH) family and have been described as putative CSC

markers for different tumor entities, such as prostate cancer

(PCa) (Collins et al., 2005; Dubrovska et al., 2012; Li et al.,

Cell Reports 38, 110422, February 22, 2022 ª 2022 The Author(s). 1
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2010; Patrawala et al., 2006), head and neck squamous cell car-

cinoma (HNSCC) (Clay et al., 2010; Prince et al., 2007; Zhang

et al., 2010), and brain tumors, such as glioblastoma multiforme

(GBM) (Flahaut et al., 2016; Pietras et al., 2014; Singh et al.,

2004). While CSCs effectively evade photon irradiation-induced

death, e.g., through more effective DNA repair, enhanced scav-

enging of reactive oxygen species (ROS), and overly activated

pro-survival pathways (Bao et al., 2006; Schulz et al., 2019;

Tsao et al., 2019), preclinical studies suggest that protons have

a higher CSC-targeting efficacy (Alan Mitteer et al., 2015; Fu

et al., 2012; Narang et al., 2015; Zhang et al., 2013). The CSC

subpopulation is not static within tumors but rather character-

ized by dynamic features and heterogeneous cellular pheno-

types. Tumor cells can transition between states of stemness

and differentiation through plastic events regulated by various

factors, such as the tumor microenvironment and metabolic

changes, aswell as therapeutic stimuli, such as ionizing radiation

or chemotherapy (Bao et al., 2006; Dirkse et al., 2019; Ghisolfi

et al., 2012; Kreso and Dick, 2014; Peitzsch et al., 2016).

In previous work, our group observed an upregulation of puta-

tive CSC markers in PCa and HNSCC cell lines after single-dose

photon irradiation (Cojoc et al., 2015; Kurth et al., 2015). This

phenotypic switch was accompanied by active histone H3

methylation within the promoter region of the ALDH1A1 gene

in PCa cell lines (Peitzsch et al., 2016). Furthermore, higher

ALDH activity was linked to amore radioresistant (RR) progenitor

phenotype with improved DNA repair capabilities, activated

epithelial-mesenchymal transition (EMT), and increased cell

migration. Interestingly, pharmacological inhibition of histone

methyltransferase enhancer of zeste 2 polycomb repressive

complex 2 subunit (EZH2) using 3-deazaneplanocin A (DZNeP)

led to a sensitization of RR PCa cells and impaired tumorige-

nicity. In this study, we characterized the biological effects of

proton irradiation in PCa, HNSCC, and GBM cells with a focus

on the CSC subpopulation. Besides standard radiobiological

and cell biological methods to investigate radiosensitivity and

stemness, we applied comparative transcriptome, DNA methyl-

ome, and Krebs cycle metabolome analysis to assess putative

resistance mechanisms to proton irradiation that may serve as

putative therapeutic targets in the future.

RESULTS

Proton irradiation induces changes in putative CSC
markers
Alterations in putative CSC marker expression upon photon irra-

diation have been described for various tumor entities (Cojoc

et al., 2015; Kurth et al., 2015; Lagadec et al., 2012; Peitzsch

et al., 2016; Phillips et al., 2006). Conversely, knowledge con-

cerning a possible CSCdynamic after proton irradiation is scarce

and inconsistent. Therefore, we analyzed effects of single phys-

ical dose of 4 Gy protons versus photons on putative CSC pop-

ulations in six tumor cell lines originating from PCa, HNSCC, and

GBM. CD44, CD133, and CXCR4 expression as well as ALDH

activity weremeasured by flow cytometry at different time points

over 14 days. While we saw a heterogeneous response

comparing the different markers, the dynamics of the individual

markers were similar in all investigated entities (Figures 1A and

S1A). All tested cell lines demonstrated a dynamic response

with an increased ALDH activity and CD44 expression in the first

week after irradiation before dropping below baseline level. In

comparison, CXCR4 expression showed an inverse dynamic

and CD133 expression declined steadily. To further assess the

functional properties of CSCs, we determined the self-renewal

capacity by sphere-formation assay. Sphere-forming potential

was significantly reduced after proton irradiation in PCa and

HNSCC cells compared with photons (Figure 1B). We were

able to validate these findings in primary prostate cultures orig-

inating from matched benign and cancer biopsies despite het-

erogeneous response rates between different patient samples

(Figure 1C).

To further characterize proton-specific effects on a defined

CSC population, ALDH+, and ALDH� populations were purified

by fluorescence-activated cell sorting and plated for 3D colony-

formation assay. We found ALDH+ cells to be less sensitive to

both irradiation types compared with the ALDH� population,

particularly in PCa and HNSCC cells (Figure 1D). This resulted in

a significantly lower relative biological effectiveness (RBE) of pro-

tons in ALDH+ compared with ALDH� cells (Figure 1E). Although

the ALDH+ population is enriched for cells with an enhanced

sphere-forming capacity (Figure S1B), spherogenicity seems to

bemediatedby only a subset of ALDH isoforms and is additionally

determined by EMT, altered cholesterol homeostasis, TNF-a/NF-

kB signaling, and estrogen response (Figures S1C, S1D, and

S1E). Taken together, our data demonstrate that proton irradia-

tion leads to dynamic changes in the expression of putative

CSC markers and has a higher efficiency to reduce the sphere-

forming capacity of cancer cells in comparison with photons.

Mathematical modeling distinguishes proton from
photon irradiation through plasticity events
The biological and experimental data allow only a snap-shot

view into the dynamic processes within the cancer cultures after

irradiation. Therefore, we used a mathematical model of tumor

cell growth that considers cellular plasticity and dynamics (Fig-

ures 2A, S2A, and S2B). After calibrating the model to fit the

experimental data, it was capable of correctly reflecting the dy-

namics of ALDH activity after irradiation with protons and pho-

tons (Figure 2B). Importantly, we were able to show rigorously

that the model had to include reverse plasticity events, when

CSCs lose their stem-like features, to replicate the qualitative

behavior observed in 28 of the 48 experimental repeats, namely

a decrease in the ALDH+ population followed by an increase.

Moreover, the model calibration yielded a significantly lower

rate of plasticity events, when cancer cells acquire a stem-like

phenotype, denoted by parameter c, after proton than after

photon irradiation (p = 0.03, Table S1). In summary, the devel-

oped model suggests that both types of plasticity events are

crucial for explaining ALDH dynamics after irradiation. Interest-

ingly, proton irradiation seems to induce less plasticity events

compared with photons.

Proton irradiation induces long-lasting DNA damages
Proton irradiation led to a significant reduction of clonogenic

survival in GBM and PCa cell lines in comparison with photons

while no difference was seen in HNSCC lines (Figure 3A). In
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previous studies, our group showed that repeated photon irra-

diation of PCa and HNSCC cell lines selected sublines with a

decreased radiosensitivity that exhibited a higher DNA damage

repair capacity, an increased expression of putative CSC

markers, and an enhanced tumorigenicity in mice (Cojoc

et al., 2015; Kurth et al., 2015). We hypothesized that these

pre-irradiated and RR sublines may be more susceptible to

proton irradiation. Indeed, proton irradiation showed a higher

efficiency than photons in reducing the clonogenic survival in

both tumor entities (Figure 3D), while causing no increased

toxicity in normal prostate cell line RWPE-1 (Figure 3B). These

findings could be validated in four primary PCa and matched

benign cultures (Figure 3C). As in the parental cell lines (Fig-

ure 1B), the sphere-forming capability was significantly

reduced for the RR-sublines after proton irradiation in compar-

ison with photons (Figure 3E).

To further investigate the molecular basis of the increased bio-

logical effect of protons as well as putative proton-specific resis-

tance mechanisms, we analyzed the number of DNA double-

strand breaks (DSBs) after irradiation indicated by phosphoryla-

tion of histone H2AX on serine 139 (ɣH2AX). Unrepaired, residual
foci 24 h after proton treatment were significantly increased in

HNSCC cells in comparison with photons, while only a trend

was seen in PCa (p = 0.175) and no differences in GBM cells (Fig-

ure 3F). We saw a similar trend in a primary prostate biopsy 24 h

after ex vivo proton irradiation, while ɣH2AX levels were markedly

lower in adjacent normal tissue compared with photons (Fig-

ure S5A). On the other hand, we saw no significant differences in

p53-binding protein 1 (53BP1) foci number between both irradia-

tion types (Figure S3A).

We further analyzed oxidative stresswith chloromethyl-20,70-di-
chlorodihydrofluorescein-diacetate (CM-H2DCFDA) staining as

A B

C

D E

Figure 1. Regulation and targeting of putative cancer stem cells (CSCs) by proton irradiation

(A) Flow cytometry analysis of ALDH activity as well as CD44, CD133, and CXCR4 surface expression measured at days 0, 3, 7, and 14 after 4 Gy photon versus

proton irradiation in DU145, PC3, FaDu, Cal33, LN229, and U87MG (n = 4, mean ± SEM, *p < 0.05, paired t test, comparison of day 14 with baseline).

(B) Sphere-formation assay after 6 Gy photon versus proton irradiation (n = 3–4, median ± min-max, *p < 0.05).

(C) Sphere-forming potential of primary normal prostate and cancer cultures after 6 Gy photon versus proton irradiation (n = 4–6, *p < 0.05).

(D) 3D colony-formation assay of ALDH+ and ALDH� populations after 0, 2, 4, 6, and 8 Gy photon versus proton irradiation. The dose-response curve is illustrated

as geometric mean of two cell lines per tumor entity (n = 6, mean ± SEM, *p < 0.05).

(E) The relative biological effectiveness (RBE) in ALDH+ and ALDH� cells was calculated as ratio between proton and photon doses resulting in a biological

isoeffect that was defined as the survival fraction at 6 Gy with photons. The calculations are based on the a and b values determined with the linear-quadratic

model (n = 6, median ± min-max, *p < 0.05) (see also Figure S1 and Table S2).
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well as intracellular glutathione levels indicated by monochlorobi-

mane using flow cytometry 24 h after irradiation and found a het-

erogeneous response between the investigated cell lines and en-

tities. Exclusively the GBM cell lines showed significantly

decreasedROS levels after proton in comparisonwithphoton irra-

diation (Figure 3G). However, PCa cells showed no significant dif-

ferences in ROS levels between the two irradiation types, but

significantly lower glutathione (GSH) levels after protons (Fig-

ure 3H). To summarize, proton irradiation significantly reduces

the clonogenic survival of PCa andGBMbut not HNSCC cell lines

in comparison with photons. Our results support the body of liter-

ature indicating the induction ofmore complexDNAdamages and

delayed repair as one of the underlying mechanisms (Carter et al.,

2018; Cuaron et al., 2016; Fu et al., 2012; Hojo et al., 2017; Oeck

et al., 2018; Sertorio et al., 2020; Vitti and Parsons, 2019). Howev-

er, we found no increase in oxidative stress following proton irra-

diation in comparison with photons.

Induction of cell death pathways after proton irradiation
We found the clonogenic potential of the cancer cell lines signif-

icantly affected by proton irradiation (Figure 3A). However, no

differences were seen for cell growth after proton and photon

irradiation in comparison with sham control (Figure 4A). Tumor

cells may bypass programmed cell death despite unrepaired

DNA damage and escape proton-specific killing as we have

seen for the ALDH+ population (Figure 1A). Apoptosis induction

measured by Annexin V staining as well as caspase-3/7 activity

and autophagy determined by autophagosome formation did

not differ between the irradiation types 48 h after treatment (Fig-

ures 4B, 4C and S4A). However, we found significantly reduced

senescence indicated by b-galactosidase activity in PCa and

GBM cells after proton in comparison with photon irradiation

(Figure 4D). Transcriptome analysis of DU145 and PC3 cells

identified 46 genes significantly upregulated 12 h after 4 Gy pro-

ton irradiation that regulate NF-kB, IL-17, TNF, and apoptosis

signaling while no alteration was found for photons at that time

point (Figures 4E, S4B, and S4C). In particular, NFKBIA, BIRC3

and ATF3 are known to be upregulated upon stress and inflam-

mation and may be involved in proton-specific early response.

However, some cancer cells may bypass cell death induction.

Cellular plasticity and epigenetic changes upon proton
irradiation
Cellular plasticity is amajor resistance factor in heterogeneous tu-

mors and is driven by the CSC population. Previously, our group

showed that the upregulation of putative CSC markers after

photon irradiation coincided with modifications in histone methyl-

ation, whose inhibition led to radiosensitization of PCa cells

(Peitzsch et al., 2016). Within this study we found a comparable

CSC marker dynamic after proton irradiation (Figure 1A). We

also examined histone methylation marks and CSCmarkers after

single-dose irradiation with 4 Gy by western blot analysis at

different time points over 21 days (Figure 5A). Both irradiation

types led to a dynamic increase of b-catenin protein expression,

a central regulator of the canonicalWnt signaling pathway that co-

ordinates cell-cell adhesion and induces stem cell regulators.

Interestingly, E-cadherin expression, as well as trimethylation at

lysine 4 (H3K4me3) and lysine 36 (H3K36me3) of histone 3, was

Figure 2. Mathematical model to predict tumor cell growth and dy-

namics within the ALDH+ population upon irradiation

(A) Diagram illustrating the relationships between the four main compartments:

irradiated non-stem cancer cells (damaged CC, y), non-irradiated non-stem

cancer cells (undamaged CC, x), irradiated cancer stem cells (damaged

CSC, w), and non-irradiated cancer stem cells (undamaged CSC, z). This di-

agram does not distinguish between the cells with distinct remaining numbers

of divisions. Green solid arrows indicate events during which new cells appear

(proliferation) and red dashed arrows indicate events during which cells

disappear (apoptosis or irradiation-induced cell death). Black dotted arrows

indicate that a cell changes its compartment, that is the total number of cells

stays constant. Each arrow is annotated with the rate at which the given event

occurs. The empty set symbol denotes cells that are removed from the system.

(B) The plots show the comparison between the ALDH+ ratio obtained from

flow cytometry analyses and the ratio predicted by the model. The error bars

indicate the standard deviation in the data, the dashed lines indicate the

standard deviation in the model predictions for photons and the dotted lines

indicate the standard deviation in the model predictions for proton treatment.

In this experiment the cell cultures were irradiated at day 1 and the ALDH+ ratio

was observed until day 14 (see also Figure S2 and Table S1).

4 Cell Reports 38, 110422, February 22, 2022

Article
ll

OPEN ACCESS

80
Chapter 6. Cellular plasticity upon proton irradiation determines tumor cell

radiosensitivity



significantly lower after proton versus photon irradiation (Fig-

ure 5A). While photons led to an induction of these activating his-

tone marks, consequently facilitating gene expression as well as

access of DNA damage repair machinery, no changes were

observed upon proton irradiation (Figure 5A). Differing epigenetic

modificationsbetween the two irradiation typeswere also found in

HNSCC xenograft tumors generated from SAS and UT-SSC-14

cells, with a significantly reduced trimethylation of histone 3 at

lysine 27 (H3K27me3) and higher ALDH1A1 expression 24 h after

local tumor irradiation with protons then with photons (Figure 5B).

Conversely, an ex vivo irradiated primary prostate biopsy showed

a trend toward downregulation of CXCR4, ALDH1A1, and

H3K36me3 24 h after both irradiation types in comparison with

sham (Figure S5A). To further characterize adaptive effects

accompanying the observed ALDH and CD44 expression dy-

namics (Figure 1A), we conducted comparative gene expression

analysis 5 days after 4 Gy single-dose irradiation. In all six cancer

cell lines,we foundahigherpercentageofup- thandownregulated

genes following both irradiation types in comparison with sham

control (Figure 5C). Despite commonly regulated genes between

the different cell lines being sparse, we identified growth differen-

tiation factor 15 (GDF15), baculoviral IAP repeat containing 3

(BIRC3), and activating transcription factor 3 (ATF3), known regu-

lators of apoptosis, metabolism, immunity, and oncogenesis, to

be induced in at least two entities after proton irradiation in com-

parison with sham control (Figures 5D and S5C). Ingenuity

pathway analysis of all significantly regulated genes revealed al-

terations in NF-kB signaling-mediated cell survival, immune regu-

lation, andcell deathpathways.Particularly senescenceandauto-

phagy upon proton irradiation are validating the functional data in

A B C

FED

G H

Figure 3. Radiobiological determination of cellular sensitivity to proton irradiation

(A) 3D colony-formation assay of the PCa cell lines DU145 and PC3, the HNSCC cell lines FaDu und Cal33, and the GBM cell lines LN229 and U87MG after

increasing doses of photons and protons (n = 6, mean ± SEM, *p < 0.05).

(B) Clonogenic survival illustrates the cellular response of the immortalized normal prostate cell line RWPE-1 after treatment with 0, 2, 4, and 6 Gy photon versus

proton irradiation (n = 3, mean ± SEM).

(C) 3D colony-formation assay of primary prostate cultures originating from tumor and adjacent normal tissue after photon versus proton irradiation with 0, 2, and

4 Gy (n = 4–6, mean ± SEM, *p < 0.05).

(D) 3D clonogenic survival assay of previously selected radioresistant (RR) PCa and HNSCC sublines after multiple fractions with 4 Gy (n = 6, mean ± SEM,

*p < 0.05).

(E) Sphere-formation assay of RR PCa and HNSCC sublines after irradiation with 6 Gy photon versus proton (n = 6, median ± min-max, *p < 0.05).

(F) Normalized residual ɣH2AX foci 24 h after 4 Gy photon versus proton irradiation in PCa, HNSCC, and GBM cell lines (n = 6, median ± min-max, *p < 0.05).

(G) Flow cytometry analysis of CM-H2DCFDA and (H) monochlorobimane as markers for oxidative stress and glutathione consumption 24 h after irradiation with

4 Gy photons in comparison with protons. Depicted are normalizedmean fluorescence intensity values combining the two cell lines used per entity, e.g., prostate

cancer (DU145, PC3) and glioblastoma (LN229 and U87MG) (n = 6, median ± min-max, *p < 0.05) (see also Figure S3 and Table S2).
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Figures4Cand4D (Figures5DandS5B). Surprisingly,we foundno

mentionable differences in gene expression patterns comparing

protonwith photon irradiation, which suggests comparable adap-

tive intracellular processes (Figure 5C). Besides histonemodifica-

tions,weanalyzedchanges inDNAmethylationpatterns5daysaf-

ter irradiation. Differential methylation levels indicated by beta

values showedonlyminor alterations comparingproton irradiation

and sham control (Figure 5E).

Besides epigenetic mechanisms, metabolic adaptations and

the interplay of both are major determinants of cellular plasticity

and radioresistance (Martı́nez-Reyes and Chandel, 2020; Wong

et al., 2017). Therefore, we investigated the static concentrations

of tricarboxylic acid cycle (TCA) metabolites in whole-cell lysates

5 days after irradiation (Figure 5F). We found elevated levels of

most TCA metabolites in PCa and HNSCC cells, while the GBM

cell lines exhibited significantly lower amounts of TCAmetabolites

following proton irradiation compared with sham control. Howev-

er, these findings may be influenced by media composition as

glutamine and other amino acids replenish the TCA cycle and

potentially obscure changes. In particular, we found significantly

higher pyruvate and succinate concentrations in HNSCC cells af-

ter proton irradiation in comparison with sham control, which may

be indicative of an induction of aerobic glycolysis in response to

irradiation-induced stress. In addition, proton irradiation induced

a trend toward increased concentrations of aspartate (p = 0.096)

and the onco-metabolite fumarate (p = 0.093), which has been

described to inhibit prolyl hydroxylase activity andstabilize hypox-

ia-inducible factor-1a, thus inducingpseudohypoxia. In summary,

proton irradiation evokes differing histone modifications in com-

parison with photons concomitant with metabolic adaptations

that constitute putative therapeutic targets.

Chemical library screen to identify proton-specific
radiosensitizers
Epigenetic and metabolic changes of cancer cells in response to

external stimuli, such as therapeutic pressure, are key regulators

A B

C

D

E

Figure 4. Different cell death modes induced by proton versus photon irradiation

(A) Cell proliferation determined daily over a course of 5 days after irradiation using CellTiterGlo assay (n = 3, mean ± SEM).

(B) Flow cytometry-based analysis of Annexin V-FITC and propidium iodide (PI) in PCa (DU145, PC3), HNSCC (FaDu, Cal33), and GBM cell lines (LN229 and

U87MG) 48 h after irradiation with 4 Gy photons versus protons. Apoptotic cells were defined as Annexin V-positive and PI-negative (n = 6, median ±min-max).

(C) Representative immunofluorescence staining of autophagosomes (green) and the calculation of autophagosome formation per cell 24 h after irradiation (n = 6,

median ± min-max, scale bars = 50 mm).

(D) b-Galactosidase activity to analyze senescence 5 days after irradiation. Depicted are values normalized to sham control (n = 6, median ±min-max, ratio paired

t test, *p < 0.05, ***p < 0.001).

(E) Volcano blots illustrating comparative transcriptome analysis in PCa cell lines DU145 and PC3 12 h after single-dose irradiation with 4 Gy of protons in

comparison with photons (n = 4, two each). Highlighted genes are differentially regulated with a fold change >2 or <2 and p < 0.05. Ingenuity pathway analysis

combining all significantly differentially regulated genes identified an upregulated NF-kBpathway, and IL-17 and TNF signaling, within 12 h after proton irradiation

(see also Figure S4).
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for cellular plasticity, preventing therapy-induced cell death and

reducing treatment success. Within a previously published

study, we showed the radiosensitizing potential of the histone

methyltransferase inhibitor 3-deazaneplanocin A (DZNeP) in

experimental PCa models (Gorodetska et al., 2019; Peitzsch

et al., 2016). To test the potential of epigenetic targeting agents

in the twoGBMcell lines LN229 andU87MG,we performed a 96-

well-based chemical library screening with 146 compounds in

Figure 5. Characterization of molecular mechanisms driving proton irradiation-induced cellular plasticity and epigenetic modulation

(A) Western blot analysis of cell lysates from DU145, PC3, FaDu, Cal33, LN229, and U87MG cells prepared 0, 3, 7, 14, and 21 days after single-dose irradiation

with 4Gy of photons versus protons (n = 2). Signal intensities fromwestern blot bands of H3K4me3, H3K36me3, b-catenin, and E-cadherin determined by ImageJ

analysis combined for all cell lines and normalized to loading control illustrates dynamic changes (n = 6, mean ± SEM, *p < 0.05, ***p < 0.001).

(B) Exemplary images of immunohistochemical staining for ALDH1A1, CXCR4, H3K27me3, and hematoxylin-eosin in tissue sections of subcutaneous xenograft

tumors derived from HNSCC cell lines SAS and UT-SSC-14. Local fractionated irradiation was performed after tumor formation and randomization. The cohort

treated with photons received a total dose of 26 Gy in 5 fractions of 5.2 Gy. Proton dose calculation included normalization to 1.1 RBE and was performed with a

total dose of 24 Gy in 5 fractions of 4.8 Gy. Tumors were harvested 24 h after last fraction, fixed, and cryopreserved. Automated imaging and calculation of mean

pixel intensity per area normalized to DAPI signal was performed for all markers for four tumors including two different locations (n = 4, *p < 0.05). Scale bars,

50 mm.

(C) Volcano blots illustrating comparative transcriptome analysis 5 days after single-dose proton irradiation with 4 Gy in comparison with sham and photons (n =

3). Highlighted genes are differentially regulated with a fold change >2 or <2 and p < 0.05.

(D) Venn diagram to illustrate overlap of differentially regulated genes within the three tumor entities revealing ATF3, GDF15, and BIRC3 as key regulators for

proton-specific response. Ingenuity pathway analysis combining all significantly differential regulated genes from all tested cell lines identified altered NF-kB

pathway, senescence, and autophagy, as well as type II interferon signaling.

(E) Differential DNA methylation analysis using Illumina EPIC Human Methylation array 5 days after irradiation illustrates only minor changes in DNA methylation

levels throughout different sites shown as mean b value correlation between sham control and proton irradiation (n = 3, cmp1, rc1).

(F) Tricarboxylic acid cycle (TCA) metabolites were analyzed by ultra-high-performance liquid chromatography with tandem mass spectrometry in total cell

extracts of DU145, PC3, FaDu, Cal33, LN229, and U87MG cells 5 days after irradiation either with photons or protons in comparison with sham control.

Comparative changes in metabolite concentration per cell is illustrated as a heatmap that depicts normalized mean fold changes. Significant alterations were

found in GBM and HNSCC cells (n = 6, median ± min-max, *p < 0.05) (see also Figure S5).
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combination with 4 Gy single-dose photon irradiation, assessing

clonogenic and spherogenic survival, as well as DNA repair (Fig-

ures 6A and 6B). In total, six compounds showed a radiosensitiz-

ing potential in all three readouts (Figures 6C and 6D). Interest-

ingly, we were able to validate the therapeutic potential for

DZNep for GBM cells. Other promising candidates include

A D
I

CB

E

F

G
H

J

Figure 6. Chemical library screen with epigenetic targeting agents for proton-specific radiosensitization of cancer cells

(A) Schematic illustration of experimental setup including cell plating, treatment, and readout of clonogenicity, DNA repair capacity, and self-renewal potential.

Cells were seeded in 96-well plates followed by 24 h of pre-treatment with 5 mM of the Epigenetics Screening Library (Cayman Chemical, cat. no. 11076)

consisting of 146 therapeutically relevant compounds and irradiated afterward either with 4 Gy photons or protons including sham control.

(B) The setup was established and tested with photon irradiation in GBM cell lines LN229 and U87MG (n = 2). Toxic compounds with a plating efficiency (PE) <

0.05 in the sham control of the colony-formation assay were dismissed. Each data point in the scatterplot represents one individual compound. Compounds

resulting in a clonogenic/spherogenic surviving fraction or yH2AX foci count <DMSO control value or >DMSO control value, respectively, were regarded as

radiosensitizing.

(C) Venn diagram illustrating the overlap of radiosensitizing compounds between LN229 and U87MG as well as the three different readouts.

(D) Heatmap including compounds with a radiosensitizing effect to photon irradiation in LN229 and U87MG inR2 readouts. Values are normalized to the DMSO

control.

(E) Representative images showing the effect of GSK-J1 on LN229 cells in the respective readouts.

(F) The established experimental setup and calculation were applied together with 4 Gy proton versus photon irradiation in DU145, Cal33, and U87MG cells with

3D colony formation as readout (n = 1).

(G) Venn diagram illustrating the overlap of compounds radiosensitizing to proton irradiation between the three cell lines.

(H) Heatmap including compounds with a radiosensitizing effect to proton irradiation in all three cell lines. Values are normalized to the DMSO control.

(I) 3D colony-formation assay after 24 h pre-treatment with EPZ5676 (DOT1L inhibitor), GSK-J1 (JMJD3/UTX inhibitor), SAHA (HDAC inhibitor), and DZNeP (EZH2

inhibitor) (5 mM) before irradiation with photons or protons in PCa and HNSCC cells (n = 6).

(J) Sphere-forming assay after treatment with EPZ5676, GSK-J1, SAHA, and DZNeP in combination with either photons or protons. DMSO was used as solvent

control (n = 6, *p < 0.05, **p < 0.01) (see also Figure S6).
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GSK-J1, an inhibitor of the H3K27 demethylase JMJD3 (Fig-

ure 6E), and MC1568, a selective inhibitor of class IIa histone de-

acetylase (HDAC). To further test whether epigenetic targeting

confers therapeutic benefit in combination with proton irradia-

tion, we repeated the screening in DU145, Cal33, and U87MG

cells using photon and proton irradiation, this time evaluating

the clonogenic survival under 3D conditions (Figure 6F). In total,

13 compounds exhibited a radiosensitizing potential in combina-

tion with proton irradiation in all three cell lines, e.g., HDAC inhib-

itor Tubastatin A, histone acetyltransferase inhibitor C646, and

histone methyltransferase G9a inhibitor UNC0321 (Figures 6G,

6H, S6A and S6B). Of note, we only found a minor overlap be-

tween the 2D and 3D colony-formation assay readout for

U87MG cells indicating the importance to implement different

biological readouts within chemical screens to identify com-

pounds that may be clinically relevant in the future (Figure S6C).

Therefore, we performed validation experiments for three identi-

fied compounds (EPZ5676, SAHA, and GSK-J1) in two PCa

(DU145 and PC3) and two HNSCC cell lines (FaDu, Cal33). The

cells were pre-treated for 24 h with 5 mM inhibitor before irradia-

tion and plated for 3D clonogenic survival and sphere formation.

The EZH2 inhibitor DZNeP, which was previously found to be a

radiosensitizing agent, was added as control. While we could

not confirm the proton-specific radiosensitizing effect in 3D

clonogenic survival (Figure 6I), all compounds reduced the

sphere-forming potential significantly in combination with proton

irradiation in comparison with photons (Figure 6J). These results

validated the high therapeutical potential of epigenetic targeting

agents for radiotherapy. However, preclinical validation in vivo is

necessary to evaluate the clinical potential.

DISCUSSION

Tumor heterogeneity is a major driver for tumor progression, ther-

apy relapse, andmetastatic spread, and is underlined by dynamic

cellular adaptations uponmicroenvironmental changes, therapeu-

tic pressure, or immune cell attack (Easwaran et al., 2014; Mea-

cham and Morrison, 2013). Increased CSC marker expression

and cellular plasticity after irradiation have been described by us

and others for a variety of tumor entities (Bao et al., 2006; Ghisolfi

et al., 2012; Lagadec et al., 2012; Peitzsch et al., 2016). Moreover,

various groupshaveshown thatproton irradiation elicits enhanced

cytotoxic effects on CSCs in comparison with conventional pho-

tons (Alan Mitteer et al., 2015; Fu et al., 2012; Narang et al.,

2015; Zhang et al., 2013). In this study,weconfirmed an enhanced

targeting of stem-like cells with sphere-forming capacity in PCa

and HNSCC cell lines, as well as in primary PCa cultures. Interest-

ingly, we found comparable dynamics of different CSC marker,

such as ALDH, CD44, CD133, and CXCR4, after proton and

photon irradiation. This indicates irradiation-induced cellular plas-

ticity as putative escape and resistance mechanisms and cannot

explain the higher therapeutic efficacy of protons over photons.

Bycontrast, Zhang et al. reporteda significant decline ofb-catenin

expression and sidepopulation 96h after 4Gyproton irradiation in

comparison with photons in the chemo-resistant and stem-like

subpopulation of non-small cell lung cancer (NSCLC) cell line

H460 (Zhang et al., 2013). Narang et al. described a lower ALDH

activity and CD44 expression in NSCLC cell line A549 48 h after

2 Gy proton compared with photon irradiation (Narang et al.,

2015). However, these reports did not investigate dynamic

changes of CSCs over time and differed in the analyzed tumor en-

tity. The intensive time-course analysis within our experimental

dataset allowed mathematical modeling that indicates a reduced

rateofplasticityeventsafter proton irradiationcomparedwithpho-

tons as a putative factor influencing cellular radiosensitivity. This

mechanism might even have the potential to explain radiores-

ponse rates within complex tumors and, at least partially, the

enhanced therapeutic potential of proton over photon irradiation,

which is reflected in the use of an RBE value of 1.1 in the clinical

setup.

Surprisingly, the purified ALDH+ population did not show

higher responsiveness to proton irradiation. The identification

of putative resistance mechanisms was realized by comparative

gene expression analysis in spheres and monolayer cultures,

which revealed differently expressed ALDH isoforms as well as

an activation of motility and ECM interaction in the ALDH+ pop-

ulation while sphere cultures were characterized by altered

cholesterol homeostasis and TNF/NF-kB signaling, which may

explain the observed differences. The observed CSCmarker dy-

namics were concomitant with an upregulation of Wnt signaling

protein b-catenin. Interestingly, this was accompanied by signif-

icantly lower expression levels of epithelial marker E-cadherin as

well as reduced methylation of the activating histone mark H3K4

and H3K36 after proton irradiation in comparison with photons.

On the contrary, other groups found lower levels of EMT

markers, vimentin and fibronectin, aswell as a reducedmigration

and invasiveness after proton irradiation compared with photons

(Narang et al., 2015; Ogata et al., 2005; Zhang et al., 2013). Data

concerning epigenetic regulation following proton irradiation are

scarce. We found one study reporting a non-significant trend to-

ward decreased H3K14 acetylation and increased H3K9,

H3K36, and H3K79 trimethylation 4 h after irradiation with high

linear energy transfer (LET) protons (Carter et al., 2018).

Together, these findings point toward epigenetic differences in

the otherwise similar regulation of putative CSC and epithelial

markers between both irradiation types. In addition, Carter

et al. (2018) investigated post-translational histonemodifications

and involvement of histone H2B ubiquitylated on lysine 120 in

complex DNA damage upon protons. The obtained results indi-

cated that, besides stemness, the repair of proton-induced com-

plex DNA DSBs is a key determinant of intracellular sensitivity.

We also observed a higher amount of residual ɣH2AX foci

indicative of unrepaired DNA DSBs after proton irradiation in

comparison with photons, which supports the notion that proton

irradiation results in more complex DNA damages, especially at

regions with a higher LET (Carter et al., 2018; Cuaron et al., 2016;

Fu et al., 2012; Hojo et al., 2017; Oeck et al., 2018; Sertorio et al.,

2020; Vitti and Parsons, 2019). Besides direct DNA damages,

high intracellular ROS levels contribute to indirect DNA damages

and other cytotoxic effects. ROS levels have been described to

be higher after proton than photon irradiation in lymphoma cell

lines (Sertorio et al., 2020) as well as in stem-like populations

of GBM and NSCLC (Alan Mitteer et al., 2015; Zhang et al.,

2013). On the contrary, we found reduced ROS production in

GBM cells and decreased GSH levels in PCa cells after

proton irradiation in comparison with photons. In addition, no
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differences in proliferation, apoptosis, and autophagy rates were

seen, but with a rather reduced senescence induction after pro-

ton versus photon irradiation. As senescence and autophagy

represent putative escapemechanisms from irradiation-induced

cell death, these findings provide a possible explanation for the

lower number of plasticity events following proton irradiation.

As cellular plasticity is a major factor influencing escape from

proton-induced cell death and is epigenetically regulated, we

performed transcriptome, DNA methylome, and TCA metabo-

lomeanalysis 5 daysafter proton irradiation.We foundalterations

in NF-kB signaling, senescence, and autophagy as well as inter-

feron response determined by the key regulatory genes ATF3,

GDF15, and BIRC3. Other groups reported an altered gene

expression 4 to 12 h after proton irradiation with upregulated

DNA repair, unfolded protein response and cell-cycle arrest (Ha

et al., 2015; Narang et al., 2015; Sertorio et al., 2020). Similar find-

ings were reported on the phospho-proteome level in 3D pancre-

atic tumoroid cultures, which displayed alterations in core

components of the DNA repair system, such as ataxia telangiec-

tasia mutated and checkpoint kinase 1/2 (Chk1/2) after proton

irradiation (Görte et al., 2020). Efficient DNA repair, as well as

cellular plasticity, is regulated on the level of epigenetic remodel-

ers that influence chromatin packaging. Therefore, we hypothe-

sized that epigenetic targeting in combination with proton

irradiation may prevent DNA repair as well as cellular plasticity

and may effectively sensitize cancer cells, in particular resistant

CSCs. An epigenetic targeting screen identified several com-

pounds with a radiosensitizing effect in all tested cell lines. These

data demonstrate a high therapeutic potential of epigenetic

targeting agents in combination with proton irradiation in vitro.

However, further studies are needed to determine timing and

dosing schedules and confirm a putative clinical potential in vivo.

All in all, the discovered proton-specific mechanisms, such as

increased complex DNA damages, lower cellular plasticity rates,

and reduced senescencemay represent putative prognostic and

therapeutic targets for proton radiotherapy of cancer patients in

the future. However, radiobiological data for fractioned proton

irradiation are urgently needed before clinical translation.

Limitations of the study
A limitation of our study is a high data variability due to a limited

availability of the proton beam facility for radiobiological experi-

ments leading to time intervals of 3–4months between biological

repeats. The data interpretation was additionally complicated by

the experimental setup consisting of six cancer cell lines

belonging to three different tumor entities with distinct biological

features, genetic background, and cellular response to ionizing

radiation. Future studies are needed to validate our radiobiolog-

ical findings within clinical datasets. Currently, there are no pub-

licly available datasets reporting comparative gene expression

data for cancer patients treated with proton radiotherapy.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

ALDH1A1 Santa Cruz sc-374076, RRID:AB_10916407

CXCR4 Abcam ab124824, RRID:AB_10975635

Tri-Methyl-Histone H3 (Lys27) Cell Signaling #9733, RRID:AB_2616029

CD133/2 Miltenyi Biotec clone 293C3, RRID:AB_244344

CXCR4 eBioscience clone 12G5, RRID:AB_1659706

CD44 Miltenyi Biotec clone DB105, RRID:AB_2726385

b-catenin Cell Signaling Technology #8480, RRID:AB_11127855

Histone H3 Cell Signaling Technology #4499, RRID:AB_10544537

E-cadherin Cell Signaling Technology #3195, RRID:AB_2291471

Oct-4 Cell Signaling Technology #2750, RRID:AB_823583

Tri-methyl-histone H3 (Lys36) Cell Signaling Technology #4909, RRID:AB_1950412

Phospho-AKT (Ser473) Cell Signaling Technology #4060, RRID:AB_2315049

Tri-methyl-histone H3 (Lys4) Cell Signaling Technology #9751, RRID:AB_2616028

GAPDH Santa Cruz Biotechnology sc-25778, RRID:AB_10167668

Phospho-H2AX Merck Millipore clone JBW301, RRID:AB_309864

53BP1 Cell Signaling Technology #4937, RRID:AB_10694558

Biological samples

Primary prostate cultures Peitzsch et al. (2016); Mukha et al. (2021) EK152052013

Chemicals, peptides, and recombinant proteins

WIT medium Stemgent #00-0045-500

Dulbecco’s Modified Eagle Medium Sigma-Aldrich D5648

Roswell Park Memorial Institute (RPMI) 1640

Medium

Sigma-Aldrich R0883

Minimum Essential Medium with Earle’s salts Sigma-Aldrich M4655

Fetal bovine serum PAA Laboratories N/A

Mammary epithelial cell basal medium Lonza #: CC-3151

Epidermal growth factor (EGF) Peprotech AF-100-15

Fibroblast growth factor (FGF) Peprotech 100–18B

Critical commercial assays

Epigenetics Screening Library Cayman Chemical #11076

p160ROCK inhibitor Y-27632 dihydrochloride Selleckchem S1049

Monochlorobimane Life Technologies M1381MP

5-(and-6)-carboxy-20,70-dichlorodihydro

fluorescein diacetate acetyl ester (CM-H2DCFDA)

Invitrogen Molecular Probes C6827

Deposited data

Agilent-072363 SurePrint G3 Human GE

v3 8x60K Microarray 039494 (Agilent

product no: G4851C)

Microarray Unit at Genomics and Proteomics

Core Facility (GPCF, DKFZ, Heidelberg, Germany)

GEO Submission (GSE192817)

[NCBI tracking system

#22614078]

EPIC array (v1_b4, Illumina) Microarray Unit at Genomics and Proteomics

Core Facility (GPCF, DKFZ, Heidelberg, Germany)

GEO Submission (GSE192899)

[NCBI tracking system

#22615751]

Experimental models: Cell lines

DU145 ATCC HTB-81

PC3 ATCC CRL-1435
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Claudia

Peitzsch (claudia.peitzsch@uniklinikum-dresden.de).

Material availability
This study did not generate new unique reagents.

Data and code availability
Gene expression (Agilent array) and DNA methylation (EPIC array) were submitted to the GEO repository. The records have been

assigned the GEO accession number GSE192817 [NCBI tracking system #22614078] and GSE192899 [NCBI tracking system

#2261575122614078]. Any additional information required to reanalyze the data reported in this paper is available from the lead con-

tact upon request. This paper does not report original code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and culture conditions
Experiments were performed with established PCa cell lines DU145 (#HTB-81, RRID:CVCL_0105, ATCC), PC3 (#CRL-1435,

RRID:CVCL_0035, ATCC) and LNCaP (#CRL-1740, RRID:CVCL_0395, ATCC), HNSCC cell lines FaDu(DD) (RRID:CVCL_VP44,

DSMZ), Cal33 (ACC 447, RRID:CVCL_1108, DSMZ), SAS (RRID:CVCL_1675, JCRB), and UT-SCC-14 (RRID:CVCL_7858, JCRB),

as well as the GBM cell line LN229 (RRID:CVCL_0393, ATCC). The putative GBM cell line U87MG (RRID:CVCL_0022, ATCC) may

not represent the tumor of origin (Allen et al., 2016). All cells were cultured according to the manufacturer’s recommendations in a

humidified incubator supplemented with 5% CO2 at 37
�C. FaDu, Cal33, PC3 and DU145 cells were maintained in Dulbecco’s Modi-

fied Eagle Medium (DMEM, #5671, Sigma-Aldrich) and LNCaP in Roswell Park Memorial Institute (RPMI) 1640 Medium (#R6504,

Sigma-Aldrich) containing 10% fetal bovine serum (FBS; A15-751, PAA Laboratories), 1 mM L-glutamine (#G7513, Sigma-Aldrich),

1%HEPES (1M; #15630106, PAA Laboratories), 1% sodium pyruvate (100mM; #S8636, Sigma-Aldrich) and 1%MEMnon-essential

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

LNCaP ATCC CRL-1740

FaDu DSMZ ACC 784

Cal33 DSMZ ACC 447

SAS JCRB JCRB0260

UT-SCC-14 JCRB CVCL_7810

LN229 ATCC CRL-2611

U87MG ATCC HTB-14

HaCaT CLS 300493

RWPE-1 ATCC CRL-11609

Radioresistant sublines (RR) Cojoc et al. (2015); Kurth et al. (2015);

Peitzsch et al. (2016)

N/A

Experimental models: Organisms/strains

NMRI (nu/nu) mice OncoRay breeding facility at Technical

University Dresden, Germany

TVV 2016–78, TVV2018-50

Software and algorithms

GraphPad Prism, version 8 N/A

SPSS (v23) N/A

R (version 3.5.2) N/A

Bioconductor package RnBeads 2.0 M€uller et al. (2019) N/A

wateRmelon package Pidsley et al. (2013) N/A

R package methylumi version 2.36.0. N/A

Mathematical modeling of cancer cell plasticity Poleszczuk and Enderling (2016); Poleszczuk

et al. (2015), 2018

N/A

nonlinear least-squares solver lsqnonlin MATLAB ver. R2019a N/A

ordinary differential equation solver ode23s MATLAB ver. R2019a N/A
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amino acids (100x; #M7145, Sigma-Aldrich). LN229 and U87MG were maintained in Minimum Essential Medium (MEM) with Earle’s

salts (#M4655, Sigma-Aldrich) containing 10% FBS, 1% penicillin-streptomycin (#P4333, Sigma-Aldrich), and 1% sodium pyruvate

(#S8636, Sigma-Aldrich). Normal cell line controls included immortalized prostate cell line RWPE-1 (RRID:CVCL_3791, ATCC)

cultured in keratinocyte serum free medium (K-SFM, # 17005042, Invitrogen) containing bovine pituitary extract (BPE) and human

recombinant epidermal growth factor (EGF) as well as the keratinocyte cell line HaCaT (RRID:CVCL_0038, CLS) propagated in

DMEMmedia. All cell lines were genotyped using microsatellite polymorphism analysis to validate identity and were tested regularly

for mycoplasma contamination. Cells were not further used above passage 20. The radioresistant sublines (RR) were established

from parental PCa and HNSCC cell lines after irradiation with multiple fractions of 4 Gy irradiation to select cell clones with intrinsic

and acquired radioresistance. The molecular and functional characterization of these RR-sublines has been previously published

(Cojoc et al., 2015; Kurth et al., 2015; Peitzsch et al., 2016).

Subcutaneous xenograft tumor model and tumor irradiation
The animal facility and experimental procedure are in line with the institutional guidelines, German animal welfare regulations, the

European directive (2010/63/EU) and were approved by authorities (approval TVV 2016–78, DD24-5131/35482 and TVV2018-50,

DD24.1–5131/449/52, Dresden, Germany). The experiments were performed using sex-mixed 8- to 10-week-old mice from outbred

strain NMRI (nu/nu) obtained from the OncoRay breeding facility at Technical University Dresden. For immunosuppression, one to

three days before transplantation of source tumors on the right hind leg the nude mice underwent 4 Gy total body irradiation (200

kV X-rays, 0.5 mm Cu filter, 1 Gy/min, n = 6–15 per cohort). Mice were observed twice a week for body weight and tumor volume

using blinded manual caliper measurements. The mice were randomly assigned to untreated control, photon (5.2 Gy per fraction),

and proton irradiation (4.8 Gy per fraction) followed by local irradiation in five fractions as soon as the tumor volume reached a diam-

eter of approximately 7 mm. Both doses were considered equal under the assumption of a generic RBE of 1.1.

After the last fraction, tumors were harvested, formalin-fixed and embedded in paraffin (FFPE). The FFPE biopsies were cut into

10 mm thick slices using amicrotome. Upon deparaffination, the sections were blocked with PBS buffer containing 5%murine serum

and stained with following primary antibodies overnight: ALDH1A1 (Santa Cruz, H-4, sc-374076, mouse, 1:50), CXCR4 antibody (Ab-

cam, clone: UMB2, ab124824, rabbit, 1:100), and Tri-Methyl-Histone H3 (Lys27) (Cell Signaling, C36B11, rabbit, #9733, 1:200) in PBS

buffer containing 1% bovine serum albumin (BSA, #P06-1391025, pan-biotech) and 0.1% Triton X-100. Upon washing, the slides

were stained for 1 h with secondary goat-anti-rabbit or anti-mouse antibody labelled with Alexa Fluor 488 (## A-11008) or Alexa Fluor

555 (#A-21428, Invitrogen, 1:500). The cell nuclei were visualized through counterstaining with 40,6-diamidino-2-phenylindole (DAPI,

#62247, Thermo Fisher Scientific). Sections were mounted with Mowiol 4–88 medium (#0713.1, Roth). Hematoxylin and eosin stain-

ing was used for histological examination. Four xenograft tumors per cohort including three different biopsy locations were imaged

using ImagerM1 (Zeiss) with a defined exposure time. Mean pixel intensity as well as area positivity was automatically analyzed using

ImageJ software.

Primary prostate cultures
Primary prostatematerial was collected fromprostate cancer patients between 2015 and 2019 upon radical prostatectomy and path-

ologically evaluated. Enrolled patients were contacted by a clinical oncologist (S.F., C.G.) and agreed to participate in this study by

signing the informed consent form. The study and experimental procedure were approved by the local ethics committee (Institutional

Review Board, Faculty of Medicine, Technische Universität Dresden, EK152052013). Primary material was transported within

advanced DMEM/F12 media (#31331093, Life Technologies) directly from surgery to pathological examination (U.S.). Four to 24 h

after surgery, biopsy material including validated prostate cancer and adjacent normal tissues (benign hyperplasia, BPH) were di-

gested over night with 1 mg/mL collagenase II (Invitrogen) shaking at 37�C (Drost et al., 2016; Frame et al., 2016). Primary cultures

from PCa and corresponding normal prostate tissue were plated in optimized WIT medium (WIT-P, #00-0045-500; Stemgent) sup-

plemented with 10 mMp160ROCK inhibitor Y-27632 dihydrochloride (Selleckchem, #S1049) on collagen-coated plates (Zhang et al.,

2017). Primary cultures were not further used past passage 5. The gene expression profiling and functional characterization of the

primary cultures including clinical characteristics of enrolled patients was previously published (Mukha et al., 2021). The median

age of included patients was determined as being 68 years [range: 62; 76], a median Gleason score of 7 [3 + 3; 5 + 5] and a median

PSA level at diagnosis with 8.82 ng/mL [5.14; 38].

METHOD DETAILS

Cell irradiation
Photon irradiation was performed using 200 kV X-rays (Yxlon Y.TU 320; 0.5 mm copper filter) at a dose rate of 1.3 Gy/min at 20 mA.

Proton irradiation was performed at the Research Facility of the University Proton Therapy Dresden (UPTD) (as described in (Beyr-

euther et al., 2018)) with 150 MeV protons at a horizontally fixed beam line with a dose rate of 3 Gy/min. A dedicated beam shaping

system consisting of a double-scattering device and a ridge filter provided a laterally extended 10 3 10 cm2 field with a 2.6 cm

spread-out Bragg peak (SOBP) (Helmbrecht et al., 2016). Cells were positioned with a polycarbonate range shifter in the middle

of the SOBP, resulting in a dose-averaged LET value of 3.7 keV/mm. Monolayer culture plates or flasks were placed vertically to

the horizontal beam axis at a 90� angle, whereas 3D cultures were positioned at a 42� angle using a dedicated setup as previously

e3 Cell Reports 38, 110422, February 22, 2022

Article
ll

OPEN ACCESS

92
Chapter 6. Cellular plasticity upon proton irradiation determines tumor cell

radiosensitivity



described (Suckert et al., 2020). Daily dosimetry with a Markus ionization chamber (model 34045, PTW) and Unidos dosimeter (PTW)

readout ensured consistent irradiation conditions. The lateral dose homogeneity of the proton field was verified by daily 2D dose

measurements with the Lynx scintillation detector (IBA Dosimetry). Applied physical doses of either radiation types ranged from 2

to 8 Gy. The proton beam at UPTD was available for radiobiological experiments every 3–4 months, causing an increased biological

variability between independent repeats.

Colony formation assay
For the two-dimensional (2D) colony formation assay, cells were plated under single cell conditions in 6-well or 96-well plates with

numbers ranging from 100 to 2000 cells per well depending on the cell line and format and irradiated 24 h after plating. After 10–

14 days, colonies were fixed with 10% formaldehyde (VWR) and stained with 0.05% crystal violet (Sigma-Aldrich). Colonies contain-

ing at least 50 cells were counted using a stereomicroscope (Zeiss). Plating efficiency (PE) and surviving fraction (SF) were calculated

as follows:

PE = ðNumber of counted coloniesÞ=ðNumber of seeded cellsÞ 3 100

SF = ðNumber of counted coloniesÞ=ðNumber of seeded cells 3 PEÞ3 100

For the three-dimensional (3D) colony formation assay, 100 mL of a media-matrigel (# 354248, Corning) mixture (1:20) containing

1000 cells was added to each well of 96-well plates coated with 50 mL low-melting agarose (1%, # A9414, Sigma) to prevent adhe-

sion. The formed polymerized cell-matrix was carefully overlaid with 50 mL ofmedia per well with or without chemical inhibitors as pre-

treatment 24 h before irradiation depending on the experiment. All samples were plated in technical triplicates. The plates were incu-

bated at 37�C and 5% CO2 in a humidified incubator for 10–14 days, scanned using an Imaging Cytometer (Celigo, Nexcelom), and

colonies with a diameter >50 mm were counted using ImageJ software.

Treatment with epigenetic compounds and CSC-targeting agents
Cells were seeded in 96-well plates for 2D or 3D colony-formation assay, sphere formation, and yH2AX assay and the Epigenetics

Screening Library (CaymanChemical, cat. number #11076 (Gorodetska et al., 2019)) was addedwith a final concentration of 5 mM the

next day. Another 24 h later, plates were irradiated and formed colonies counted at d10, spheres at d14 and yH2AX foci formation

after 24 h. GBM cell lines LN229 and U87MG did not form distinguishable 2D-colonies under 96-well conditions. Therefore, the area

covered by cells per well was determined in percent using ImageJ software and used as a surrogate for the calculation of an approx-

imated survival fraction. The chemical library screen using photons in cell lines LN229 and U87MG was performed in biological du-

plicates for each cell line and readout. Each replicate consisted of one well per compound and 46 DMSO control wells. Compounds

with a plating efficiency of lower than 5% in the sham control were regarded as toxic and removed from further analysis. For each cell

line and readout, themean of the DMSO control values served as threshold to determine a radiosensitizing effect. Compounds with a

lower clonogenic or spherogenic survival fraction and a higher yH2AX foci count than the DMSO control were classified as potentially

radiosensitizing in the respective readout. The chemical library screen for the GBM cell lines U87MG and LN229 were performed for

all three read-outs in biological triplicates. The screen comparing proton and photon irradiation with DU145, Cal33, and U87MG cells

was performed once for each cell line.

Sphere formation assay
To evaluate the self-renewal potential, cells were grown as non-adherent multicellular cell aggregates, so-called sphere cultures.

Cells were plated under single cell conditions at a density of 1,000 cells per well in 24-well or 96-well ultra-low attachment plates

(#10023683, Corning) in mammary epithelial cell basal medium (MEBM, #CC-3151, Lonza) supplemented with 4 mg/mL insulin

(#I9278, Sigma-Aldrich), B-27 (50x, 17504044, Invitrogen), 20 ng/mL epidermal growth factor (EGF, # AF-100-15, Peprotech), and

20 ng/mL fibroblast growth factor (FGF, # 100–18B, Peprotech). Media and supplements were refreshed once a week. Plates

were automatically scanned after 14 days using the Celigo S Imaging Cell Cytometer (Brooks) and spheres with a diameter

>100 mmwere counted either manually or using ImageJ software. The sphere-forming capacity was calculated as the ratio of formed

spheres relative to the number of plated cells in percent.

Flow cytometry analysis and fluorescence-activated cell sorting (FACS)
Cells were dissociated using Accutase (PAA Laboratories) and resuspended in PBS-based (PAA) staining buffer containing 5% FBS

(PAA), 1%HEPES (25 mM, Sigma-Aldrich), and 1 mM EDTA (Sigma-Aldrich). Cell suspensions were stained with direct labelled anti-

CD133/2-PE (clone 293C3, Miltenyi Biotec, dilution 1:10), anti-CXCR4-PE-Cy7 (clone 12G5, eBioscience, dilution 1:25), and anti-

CD44-APC (clone DB105, Miltenyi Biotec, dilution 1:100) antibodies for 1 h on ice and protected from light. Cells incubated with

the respective fluorochrome-labelled isotype were used as control to discriminate positive staining from unspecific background.

Aldehyde dehydrogenase activity was analyzed using the ALDEFLUORTM assay (#01700, Stemcell Technologies) according to

the manufacturer’s protocol. Cells incubated with the specific ALDH inhibitor diethylaminobenzaldehyde (DEAB, #01705) served
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as negative control. Counter-staining with propidium iodide (PI), 40,6-diamidino-2-phenylindole (DAPI), or 7-amino-actinomycin D (7-

AAD) (1:1000, 1 mg/mL, #A1310, Thermo Fisher Scientific) depending on the staining setup was used to exclude dead cells from

downstream analysis. Samples were analyzed with the BD Celesta flow cytometer (Becton Dickinson) after compensation and ac-

quired with BD FACSDiva 6.0 software. A minimum of 50,000–100,000 viable cell events were collected per sample. For data anal-

ysis, FlowJo software (version 7.6.2) was used.

To isolate defined cell populations after staining, cells were sorted with the BD FACS Aria III (BD Bioscience) using the 100 mm

nozzle directly into culture media after exclusion of dead cells and doublets within the DIVA software. Reanalysis of the sorted

cell suspension was used to determine purity.

Mass spectrometry-based analysis of Krebs cycle metabolites
Cells were seeded in triplicates at 200,000 cells per well in 6-well plates 24 h before irradiation. Five days after irradiation, cells were

washed three times with ice-cold PBS and harvested in 500 mL methanol through scratching. One well was used to determine the

exact cell number. Liquid chromatography-tandemmass spectrometry (LC-MS/MS) was used to determine concentrations of Krebs

cycle metabolites (succinate, fumarate, malate, citrate, isocitrate, cis-aconitate, a-ketoglutarate, 2-hydroxyglutarate) as well as py-

ruvate, lactate, and four amino acids (glutamate, glutamine, aspartate, asparagine), as described previously (Richter et al., 2019).

Quantification of metabolites was performed based on comparison to ratios of analyte peak areas to peak areas obtained from stable

isotope labeled internal standards in samples to those observed in respective calibrators. Results were normalized to determined cell

numbers.

Differential gene expression analysis
Gene expression profiling was performed in triplicates in six tumor cells lines (DU145, PC3, FaDu, Cal33, LN229, U87MG) 12 h and

5 days after irradiation either with 4 Gy of photons or protons in comparison to sham control. Total RNA was isolated using the

RNeasy Kit (Qiagen) and Qubit RNA assay (Thermo Fischer Scientific) for quantification. Samples containing 20 mL with an RNA con-

centration of 50 ng/mL were shipped to the Microarray Unit at Genomics and Proteomics Core Facility (GPCF, DKFZ, Heidelberg,

Germany) to perform global gene expression analysis with the Agilent-072363 SurePrint G3 Human GE v3 8 3 60K Microarray

039494 (Agilent product no: G4851C) according to the manufacturer’s recommendations. Raw data were transferred to the Omics

IT and Data Management Core Facility (ODCF, DKFZ, Heidelberg) to ensure data management and depository. The raw data files

were submitted to the GEO repository with accession number GSE192817 [NCBI tracking system #22614078]. Differential gene

expression analysis was performed using R version 4.0.2 and Bioconductor package limma (Ritchie et al., 2015). Prior to analysis,

the raw data were background-corrected using the normal-exponential (normexp) method (Shi et al., 2010) and normalized using

quantile normalization (Oshlack et al., 2007). Statistical computation was moderated using the empirical Bayes statistics (Smyth,

2004) available in the limma package. Significantly differentially regulated genes between the treatment groups with p value <

0.05 and fold change >2 were combined and analyzed with the pathway analysis tools from Ingenuity Pathway Analysis (IPA, Qiagen)

software, Gene Set Enrichment Analysis (GSEA), or g:Profiler to identify canonical pathways.

Genome-wide DNA methylation analysis
Genomic DNAwas isolated from the cell cultures as described for differential gene expression analysis using the QiampDNAMini Kit

(Qiagen). 40 mL DNA solutions with a concentration of 25 ng/mL were shipped to the Microarray Unit at Genomics and Proteomics

Core Facility (GPCF, DKFZ, Heidelberg, Germany) to perform human DNA methylation bead array analysis with the EPIC array

(v1_b4, Illumina). The raw data files were submitted to the GEO repository with accession number GSE192899 [NCBI tracking system

#22615751]. Analysis was run with the R (version 3.5.2) and Bioconductor package RnBeads 2.0 (M€uller et al., 2019) to determine

beta (b) values that estimate the methylation level e.g., within gene bodies, promotor regions and CpG islands, and also perform dif-

ferential methylation analysis in these regions.

Differential methylated regions (DMR) were visualized using volcano plots and included for downstream pathway analysis, gene

enrichment and gene ontology (GO) analysis. Within the RnBeads settings configuration, background correction was performed us-

ing the R package methylumi (version 2.36.0.) and normalization using the dasen method from the wateRmelon package (Pidsley

et al., 2013).

Western blot analysis
Cells were lysed in RIPA buffer (Santa Cruz Biotechnology) and the protein concentration of the lysates was measured using the bi-

cinchoninic acid (BCA) Protein Assay Kit (Pierce) according to the manufacturer’s recommendations. Protein lysates with an equal-

ized protein concentration (10–20 mg) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, 4–

20%) and transferred onto a nitrocellulosemembrane (GEHealthcare). Themembranes were blockedwith PBS buffer containing 5%

bovine serum albumin (BSA) and 0.1% Tween 20 and were incubated over night with following primary antibodies (dilution 1:1000):

b-catenin rabbit monoclonal antibody (D10A8, #8480, Cell Signaling Technology (CST)), histone H3 rabbit monoclonal antibody

(D1H2, #4499, CST), E-cadherin rabbit monoclonal antibody (24E10, #3195, CST), oct-4 rabbit polyclonal antibody (#2750, CST),

tri-methyl-histone H3 (Lys36) rabbit monoclonal antibody (D5A7, #4909, CST), phospho-AKT (Ser473) rabbit monoclonal antibody

(D9E, #4060, CST), sox2 rabbit monoclonal antibody (D6D9, #3579, CST), and tri-methyl-histone H3 (Lys4) rabbit monoclonal
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antibody (C42D8, #9751, CST). The glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (FL335) rabbit polyclonal antibody (sc-

25778, Santa Cruz Biotechnology) was used as loading control. Membranes were washed and incubated with species-appropriate

horseradish peroxidase (HRP)-conjugated secondary antibody (CST, 1:20,000 dilution). The signal was visualized using the

Enhanced Chemiluminescence (ECL) Western Blotting Detection Reagent (GE Healthcare) on films in a darkroom with appropriate

developer and fixation solution. After scanning the films, semiquantitative analysis of protein expression relative to the loading control

was performed using ImageJ software.

Determination of glutathione, reactive oxygen species, and mitochondrial membrane potential
Tomeasure the level of reactive oxygen species (ROS) 24 h after irradiation, cells were incubated upon harvestingwith 5mmol 5-(and-

6)-carboxy-20,70-dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA, Invitrogen Molecular Probes, 1:2,000) in PBS

buffer containing 5% FBS, 1 mM EDTA, and 1% HEPES for 20 min at 37�C. The same staining conditions were used to determine

glutathione (GSH) levels with 40 mmol/L monochlorobimane (mBCI; #M1381MP, Life Technologies, 1:2000) and the mitochondrial

membrane potential with the cell-permeant tetramethylrhodamine ethyl ester (TMRE, 100 nM, #T669, Thermo Fisher Scientific). After

washing, samples were analyzed with the BD Celesta flow cytometer (Beckton Dickinson). Dead cells were excluded using DNA in-

tercalating agents PI, DAPI, or 7-AAD. Solvent control with ethanol orDMSOat indicated concentrationswas used as gating control. A

minimum of 100,000 viable cells events were collected per sample and data were analyzed using FlowJo software (version 7.6.2).

Cell proliferation
Cells were seeded at a density of 1,000 cells per well in 96-well plates. Cell viability was analyzed every day over five days using the

CellTiterGlo� Luminescent Assay (#G7570, Promega) according to the manufacturer’s instructions. The luminescence signal was

measured using a microplate reader (Tecan GENios Pro).

Immunofluorescence staining
Cells were plated at a density of 5,000 cells per well in 96-well black polystyrene microplates with a flat, clear bottom (#3603, Corn-

ing). Cells were irradiated with 4 Gy of photons or protons 24 h after seeding. At respective time points after irradiation (30min and 24

h), cells were first fixed for 15 min in PBS supplemented with 4% formaldehyde. After washing, the cells were then blocked with 5%

BSA in PBS overnight to prevent unspecific antibody binding, permeabilized with 1% BSA and 0.1% Triton X-100 in PBS, and incu-

bated with the primary antibodies anti-phospho-H2AX (Ser139, clone JBW301, Merck Millipore, 1:250 dilution) and anti-53BP1 (Cell

Signaling Technology, 1:500 dilution) at 4�C overnight. After washing, secondary goat anti-mouse IgG (H + L)-AlexaFluor488 (1:400,

Thermo Fisher Scientific), anti-rabbit IgG (H + L)-AlexaFluor555 (1:400, Thermo Fisher Scientific) and DAPI (1 mg/mL, Sigma, 1:1000)

were added for 1 h. After repeated washing, the slides were embedded in Mowiol 4–88 mounting medium (Carl Roth) and the clear

bottom 96-well plates were covered with PBS buffer. Imaging was performed with the Observer microscope (Zeiss) using the same

exposure time setup in the Zen software. 53BP1 and yH2AX foci were quantified using ImageJ’s ‘‘find maxima’’ feature within the

DAPI mask from >100 cells per population.

Cell death analysis
For cell death and apoptosis evaluation, cells were harvested 48 h after irradiation and stained with Annexin V Apoptosis detection kit

(#V13242, Thermo Fisher Scientific) according to the manufacturer’s instructions and analyzed using flow cytometer BD Celesta (BD

Biosciences).

To determine Caspase 3/7 activity, cells were plated in triplicates in 96-well plates at a density of 2,000 cells per well and analyzed

72 h after irradiation using the Caspase-Glo� 3/7 assay (#G8090, Promega) according to the manufacturer’s recommendations.

To determine the induction of autophagic foci, cells were plated in a 96-well black clear bottom plates (Corning) at a density of

3,000 cells per well and 24 h after irradiation analyzed using Cell MeterTM Autophagy Kit (#ABD-23000, Biomol) according to man-

ufacturer’s instructions. The plates were imaged with the fluorescence microscope Observer (Zeiss) using the Zen software. The

number of autophagosomes per cell was quantified using ImageJ Software.

Senescence was evaluated 5 days after irradiation using the Senescence b-Galactosidase staining kit (#9860, Cell Signaling).

Bright field images of fixed and stained cultures were taken with Axiovert200 (Zeiss) microscope. Number of blue stained cells

per total cell number within field of view were counted manually.

Mathematical modeling of cancer cell plasticity upon irradiation
An ordinary differential equation version of existing models of cancer cell plasticity (Poleszczuk and Enderling, 2016; Poleszczuk

et al., 2015, 2018) was created. Let xi denote non-stem cancer cells (CC) that have proliferated i times and have not been exposed

to radiation (undamaged CC) and let yi denote non-stem cancer cells that have proliferated i times and have been irradiated

(damaged CC). Similarly, let w and z denote cancer stem cells that have been either irradiated (damaged CSC) or not (undamaged

CSC). The following model was considered:

x00ðtÞ = � ðp + dÞx0ðtÞ+pð1 � sÞðzðtÞ + wðtÞÞ+ m

l+ 1
y0ðtÞ;
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x0iðtÞ = � ðp + dÞxiðtÞ+pð2xi�1ðtÞ + yi�1ðtÞÞ+ m

l+ 1
yiðtÞ; for1%i%pcap

y00ðtÞ = � ðp + dÞy0ðtÞ � cy0ðtÞ+ vwðtÞ � m

l+ 1
y0ðtÞ;

y0i ðtÞ = � ðp + dÞyiðtÞ � cyiðtÞ+pyi�1ðtÞ � m

l+ 1
yiðtÞ; for1%i%pcap

z0ðtÞ = psðzðtÞ + wðtÞÞ;

w0ðtÞ = � vwðtÞ+ c
Xpcap
i =0

yiðtÞ;

where all parameters are assumed to be positive and the probability s%1. The relationships between the compartments described by

this system of equations are illustrated in Figure 2A. In this model we assume that CSCs can proliferate indefinitely, whereas CC can

proliferate only pcap times before they die (Figure S2A). Moreover, we assume that only irradiated cells can undergo plasticity events

(Figure S2B). The first term in each of the equations for xi and yi accounts for the fact that CC undergo apoptosis with rate d and are

then removed from the system, and proliferate with rate p, after which they are described by variable xi +1 or yi +1. The last term of each

of these equations accounts for mutations that decrease radiation induced damage. Here, l+ 1 is the average amount of damage

caused by irradiation and m is the rate at which damage is reduced by one. The second term in the equation for x00 describes the

asymmetric proliferation of CSC, which occurs at rate pð1 � sÞ, where s is the probability of symmetric division i.e., we assume

that offspring of CSC are undamaged CCwith full proliferation capacity (Figure S2A). The second term of the equation for x0i accounts
for the proliferation of non-stem cancer cells. We assume that the offspring of non-stem cells are undamaged non-stem cells. Pro-

liferation decreases the remaining proliferation capacity of both, the parent cell and the daughter cell by 1. The terms- cyi in the equa-

tions for y0i account for plasticity events that is non-stem cells turning into stem cells (Figure S2B). The term vw accounts for reverse

plasticity events that is stem cells changing into a non-stem cell. Finally, the equation for z0 describes symmetric proliferation of stem

cells, both damaged and undamaged. The first term of the equation forw0 accounts for reverse plasticity events and the second term

for regular plasticity events.

This model was calibrated with experimental data with the assumption that ALDH is a perfect stemness marker i.e., all ALDH+ cells

are CSCs and all ALDH� cells are CCs. We used data obtained from the 3D colony formation assay of ALDH+ and ALDH� population

after irradiation with 4 Gy photons or protons (Figure 1D) to set the parameters SFcc and SFCSC, denoting the survival fraction of CC

andCSCafter irradiation, respectively.Moreover, this parameter valuewas used to define the average damage induced by irradiation

l+ 1 = 1� lnðSFCCÞ. Some other parameter valueswere obtained from literature, see Table S1. The remaining parameter valueswere

obtained by minimizing the least squares of the residuals between the ALDH+ ratio predicted by the model and the ALDH+ ratio ob-

tained from the flow cytometry analysis of ALDH activity, as shown in Figure S1A. We have fitted one set of parameters per cell line

and treatment type, and performed the fitting procedure for each experimental repeat, differing only in the initial ALDH+ ratio at day 0.

For this purpose, the nonlinear least-squares solver lsqnonlin and the ordinary differential equation solver ode23 s fromMATLAB ver.

R2019a were used. Significant differences between the parameters for both treatments were analyzed using the sign test.

We couldn’t replicate the behavior of the data when fitting a model without reverse plasticity events that is v = 0. In order to check

whether this model could simulate a CSC ratio that decreases at first and increases at a later time point, as seen in the data, we

summed the equations to obtain equations for cancer non-stem cells denoted a (a = x + y, where x and y are undamaged and

damaged CC, respectively) and cancer stem cells denoted b (b = w + z, where z and w are undamaged and damaged CSC, respec-

tively) and obtained the following system of equations:

a0 = ðp�dÞa� 2p
�
xpcap + ypcap

�
� cy +pð1� sÞb;

b0 = psb+ cy:

We are interested in the sign of the derivative

�
b

a+b

�0
: We have:
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�
b

a+b

�0
=
b0ða+bÞ � bða0 +b0Þ

ða+bÞ2 >0

5 b0a� a0b>0

5psba + cya > ðp�dÞab� 2p
�
xpcap + ypcap

�
b� cyb+pð1� sÞb2

50>pð1� sÞb2 +
h
ðp�d�psÞa� 2p

�
xpcap + ypcap

�
� cy

i
b� cya

Let us denote the right-hand side of the above inequality by f(b(t)) We want to check whether the derivative
�

b
a+b

�0
may be negative

for t<t� and positive for t>t� for a certain t>0� i.e. whether fðbðtÞÞ>0 for t<t� and fðbðtÞÞ<0 for t>t�. Note, that bðtÞ is an increasing func-

tion, since its derivative is positive, hence, this is equivalent to checking whether fðbÞ>0 for b<b� and fðbÞ<0 for b>b� for a certain b�>
0�. The quadratic function fðbÞ can only be negative if it has two zeros, so let us assume it does and denote the zeros by b1 and b2.

According to Vieta’s formula: b1b2 =
�cya
pð1�sÞ%0; since s<1, because it is a probability. Hence, the zeros have opposite signs or one of

them is equal to zero. Therefore, either fðbÞ>0 for b>0 or fðbÞ<0 for b˛ð0; b�Þ and fðbÞ>0 for b>b�:

QUANTIFICATION AND STATISTICAL ANALYSIS

Experiments were performed in biological and technical triplicates for each cell line unless otherwise noted (with ‘‘n’’ denoting the

total number of biological replicates). Group differences were analyzed by paired Student’s t-test. A p value < 0.05 (*), <0.01 (**),

and <0.001 (***) was regarded as statistically significant. The differences between cell survival curves were analyzed using GraphPad

Prism or SPSS (v23) software by fitting the data into the linear-quadratic formula, where the fraction of surviving cells (SF) at a defined

dose (D) is described by following formula using stratified linear regression: SF = expð� 1 �ða �D + b �D^2ÞÞ. To statistically asses

the difference of linear-quadratic models between photon and proton irradiation, data of the two groups were combined and two

multivariable linear models were fitted to the natural logarithm of the surviving fraction; the first including dose and dose squared

only, and the second including the interactions between treatment and dose and between treatment and dose squared additionally.

The constant fit parameter was set to zero. The improvement in R2when including the treatment-related termswas evaluated by an F-

test. To illustrate the differences of both irradiation types on clonogenic cell survival, the relative biological effectiveness (RBE) was

calculated as the ratio of the physical doses with biological iso-effect: RBE = DðProtonÞ=DðPhotonÞ.
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Supplementary Figure S1. Dynamic of putative cancer stem cell (CSC) marker 

expression upon proton irradiation (related to Figure 1). (A) Representative flow cytometry 

blots of aldehyde dehydrogenase (ALDH) activity, CD44, CD133 and CXCR4 cell surface 

expression in DU145 cells after proton irradiation. (B) ALDH activity in DU145 and LNCaP cells 

cultured as monolayer versus spheres (n=3, error bars=SEM, *p<0.05). (C) Gene expression 

of different the ALDH isoforms ALDH1A1, ALDH1A3, ALDH3A1, ALDH6A1, ALDH7A1, and 

ALDH4A1 in DU145 cells under monolayer conditions compared to spheres culture (n=3, 

Agilent array, *p<0.05). (D) Comparative transcriptome analysis indicates 117 differentially 

regulated genes in the ALDH+ population and spheres compared to DU145 monolayer 

cultures. (E) Pathway analysis identified ALDH- and sphere-specific pathways as well as 

overlapping signatures. 
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Supplementary Figure S2. Mathematical modeling framework to investigate selection 

upon irradiation (related to Figure 2 and Table S1). (A) CSCs can proliferate indefinitely, 

whereas cancer non-stem cells (CC) can only proliferate 𝑝𝑐𝑎𝑝 times before they die and are 

removed from the model. The parameter 𝜌 denotes the remaining number of divisions for the 

given CC.  We assume that CC that are created via symmetrical proliferation of CSC have 𝜌 =

𝑝𝑐𝑎𝑝. (B) We assume that only irradiated cells can undergo plasticity events. Irradiated non-

stem cancer cells acquire a stem cell phenotype with rate 𝑐 (plasticity events), whereas 

irradiated CSCs lose their stemness with rate 𝑣 (reverse plasticity events). We assume that 

cells created in plasticity events or reverse plasticity events retain the damage and that CC 

that were created in reverse plasticity events have full proliferation capacity. 
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Supplementary Figure S3. Identification and characterization of proton-specific 

determinants of intracellular sensitivity with classical radiobiological assays (related to 

Figure 3). (A) Normalized residual 53BP1 foci count in PCa (DU145, PC3), HNSCC (FaDu, 

Cal33), and GBM cell lines (LN229, U87MG) 24 h after 4 Gy photon versus proton irradiation. 

(n=6, SEM).  
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Supplementary Figure S4. Characterization of putative cell death mechanisms induced 

by proton irradiation (related to Figure 4). (A) Caspase-3/7 activation in DU145, PC3, FaDu, 

Cal33, LN229 and U87MG cell lines were determined 72 h after irradiation with 4 Gy (n=3, 

error bars=SEM). (B) Volcano blots illustrating comparative transcriptome analysis in PCa cell 

lines DU145 and PC3 12 h after single dose irradiation with 4 Gy of protons and photons in 

comparison to sham (n=4, two each). Highlighted genes are differentially regulated with a fold 

change >or< 2 and a p value <0.05. (C) Ingenuity pathway analysis combining all significantly 

differentially regulated genes identified up-regulated NF-κB pathway, IL-17 and TNF signaling 

within 12 h after proton irradiation while no altered gene expression was found 12 h upon 

photon irradiation. 
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Supplementary Figure S5. Cellular plasticity and epigenetic modulation upon proton 

irradiation (related to Figure 5). (A) Immunofluorescence staining for ALDH1A1, CXCR4, 

H3K36me3, ɣH2AX, cytokeratin 4/15 (CK4/15) and cleaved caspase-9 in sections of primary 

adjacent normal and PC biopsies fixed 24 h after 4 Gy irradiation (one patient, three locations). 

(B) Individual ingenuity pathway analyses for differentially regulated genes in DU145, PC3, 

FaDu, Cal33, LN229, and U87MG cells 5 days after 4 Gy irradiation comparing a proton-

specific signature to sham control (n=3). (C) Venn diagram illustrates overlap of differentially 

regulated genes between cell lines and tumor entities. 
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Supplementary Figure S6. Epigenetic targeting to sensitize tumor cells to proton 

irradiation (related to Figure 6). (A) Heatmap including compounds with a radiosensitizing 

effect to proton irradiation in ≥ 2 cell lines. Values are normalized to the DMSO control. (B) 

Venn diagram showing compounds with a radiosensitizing effect only to proton but not to 

photon irradiation. (C) Venn Diagram showing the overlap of compounds with a 

radiosensitizing effect to photon irradiation in U87MG cells in the 2D and the 3D colony 

formation assay. 
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Table S1. Parameter values of the calibrated models for each cell line and treatment. Related to 

Figure 2. 

Treatment DU145 PC3 FaDu Cal33 LN229 U87MG 

Proliferation rate (p) [1/h] 

Both 1

34
  

 
(Stone et al., 

1978)
  

1

27
 ( 

 
(Kim et al., 

2008) 

1

30
  

 
(Abbaspour et 

al., 2017)
  

1

40
  

 
(www.dsmz.de)

  

1

31
  

 
(www.atcc. 

com)
  

1

34
  

 
(www.dsmz.de)

  

Apoptosis rate (d) [1/h] 

Both 0.02

24
  

 
Portz et al., 

2012)
  

0.09

24
  

 
(Abbaspour et 

al., 2017)
  

0.16

24
  

 
(Yen et al., 

2016)
  

0.01

24
  

 
(Wang et al., 

2015)
  

0.18

24
  

 
(Shao et al., 

2019)
  

0.02

24
 

 
(Jiang et al., 

2018; Liu et al., 

2018)
 ) 

Symmetric division probability of CSC (s) (dimensionless) 

Photon 0.03  
 

(Hu et al., 
2017)

  

0.8  
 

(Abbaspour et 
al., 2017)

  

0.0355 0.789 1 0.73  
 

(Lubanska et 
al., 2014)

  

Proton 0.03  
 

(Hu et al., 
2017)

  

0.8  
 

(Abbaspour et 
al., 2017)

  

1 0.822 1 0.73  
 

(Lubanska et 
al., 2014)

  

Rate of plasticity event: CC turning into CSC (c) [1/h] 

Photon 1.2 × 10−11 4.22 × 10−5 1.54 × 10−9 0.0018 0.0402 0.054 

Proton 4.9 × 10−15 6.72 × 10−7 3.7 × 10−14 0.001 5.05 × 10−7 5.95 × 10−5 

Rate of reverse plasticity events: CSC turning into CC (v) [1/h] 

Photon 5.33 × 10−4 0.105 0.046 4.3 × 10−12 0.031 0.01 

Proton 0.003 4.9 × 10−11 0.0263 7.07 × 10−5 0.0256 4.87 × 10−6 

Mutation rate (m) [1/h] 

Photon 1.82 6.85 0.0008 0.0318 27.58 32.65 

Proton 0.011 0.28 0.0425 0.004 0.077 0.152 

Proliferation capacity (𝒑𝒄𝒂𝒑)  (dimensionless) 

Photon 3 1 4 14 3 4 

Proton 4 7 33 12 4 14 

 

112
Chapter 6. Cellular plasticity upon proton irradiation determines tumor cell

radiosensitivity



T
a

b
le

 S
2

. 
R

a
d
io

b
io

lo
g
ic

a
l 
p

a
ra

m
e
te

r 
d

e
s
c
ri
b

in
g

 c
e

ll-
in

tr
in

s
ic

 r
a

d
io

s
e
n

s
it
iv

it
y
 b

a
s
e

d
 o

n
 c

e
ll 

s
u
rv

iv
a

l 
c
u

rv
e

s
 f

it
te

d
 t
o

 t
h

e
 l
in

e
a
r-

q
u
a

d
ra

ti
c
 m

o
d
e

l.
 

R
e

la
te

d
 t

o
 F

ig
u
re

 1
 a

n
d

 F
ig

u
re

 3
. 

Tu
m

o
r 

e
n

ti
ty

 
C

e
ll 

lin
e

 
P

o
p

u
la

ti
o

n
 

IR
 

α
 (

G
y-1

) 
β

 (
G

y-2
) 

α
/β

 (
G

y)
 

SF
p

h
o

to
n
 (

4
 G

y)
 

D
(S

F 4
G

y)
 (

G
y)

 
R

B
E(

4G
y)

 

P
ro

st
at

e
 C

a 
D

U
1

45
 

P
ar

en
ta

l 
P

h
o

to
n

 
0

.0
76

 
0

.0
17

 
4

.4
71

 
0

.5
62

 
4

.0
00

 
 

 
 

 
P

ro
to

n
 

-0
.0

49
 

0
.0

65
 

-0
.7

54
 

 
3

.3
78

 
1

.1
8 

 
 

R
R

 s
u

b
lin

e 
P

h
o

to
n

 
0

.0
90

 
0

.0
02

 
6

0
.1

33
 

0
.6

81
 

4
.0

00
 

 

 
 

 
P

ro
to

n
 

0
.1

35
 

0
.0

06
 

2
3

.3
16

 
 

2
.5

68
 

1
.5

6 

 
 

A
LD

H
+  p

o
p

u
la

ti
o

n
 

P
h

o
to

n
 

0
.2

50
 

-0
.0

11
 

-2
2

.7
2

7
 

0
.4

39
 

4
.0

00
 

 

 
 

 
P

ro
to

n
 

0
.3

04
 

-0
.0

24
 

-1
2

.6
6

7
 

 
3

.9
30

 
1

.0
2 

 
P

C
3

 
P

ar
en

ta
l 

P
h

o
to

n
 

0
.0

34
 

0
.0

22
 

1
.5

45
 

0
.6

14
 

4
.0

00
 

 

 
 

 
P

ro
to

n
 

-0
.0

51
 

0
.0

56
 

-0
.9

11
 

 
3

.4
42

 
1

.1
6 

 
 

R
R

 s
u

b
lin

e 
P

h
o

to
n

 
0

.2
68

 
-0

.0
10

 
-2

7
.6

8
6

 
0

.4
00

 
4

.0
00

 
 

 
 

 
P

ro
to

n
 

0
.0

10
 

0
.0

52
 

0
.1

83
 

 
4

.1
09

 
0

.9
7 

 
 

A
LD

H
+  p

o
p

u
la

ti
o

n
 

P
h

o
to

n
 

0
.0

41
 

0
.0

14
 

2
.9

29
 

0
.6

78
 

4
.0

00
 

 
  

  
  

P
ro

to
n

 
0

.1
24

 
0

.0
02

 
6

2
.0

00
 

 
2

.9
85

 
1

.3
4 

H
N

SC
C

 
F

a
D

u
 

P
ar

en
ta

l 
P

h
o

to
n

 
0

.1
52

 
0

.0
17

 
8

.9
41

 
0

.4
15

 
4

.0
00

 
 

 
 

 
P

ro
to

n
 

0
.0

88
 

0
.0

24
 

3
.6

67
 

 
4

.4
93

 
0

.8
9 

 
 

IR
 s

u
b

lin
e 

P
h

o
to

n
 

0
.1

50
 

0
.0

11
 

1
3

.6
27

 
0

.4
60

 
4

.0
00

 
 

 
 

 
P

ro
to

n
 

0
.2

54
 

0
.0

05
 

5
0

.8
00

 
 

2
.8

89
 

1
.3

8 

 
 

A
LD

H
+  p

o
p

u
la

ti
o

n
 

P
h

o
to

n
 

0
.1

81
 

-0
.0

05
 

-3
6

.2
0

0
 

0
.5

25
 

4
.0

00
 

 

 
 

 
P

ro
to

n
 

0
.1

60
 

-0
.0

04
 

-4
0

.0
0

0
 

 
4

.5
40

 
0

.8
8 

 
C

al
3

3
 

P
ar

en
ta

l 
P

h
o

to
n

 
-0

.0
06

 
0

.0
23

 
-0

.2
61

 
0

.7
09

 
4

.0
00

 
 

 
 

 
P

ro
to

n
 

-0
.0

99
 

0
.0

50
 

-1
.9

72
 

 
3

.7
83

 
1

.0
6 

 
 

IR
 s

u
b

lin
e 

P
h

o
to

n
 

0
.0

08
 

0
.0

17
 

0
.4

79
 

0
.7

41
 

4
.0

00
 

 

 
 

 
P

ro
to

n
 

-0
.0

88
 

0
.4

59
 

-0
.1

92
 

 
0

.9
09

 
4

.4
0 

 
 

A
LD

H
+  p

o
p

u
la

ti
o

n
 

P
h

o
to

n
 

0
.1

87
 

-0
.0

13
 

-1
4

.3
8

5
 

0
.5

83
 

4
.0

00
 

 
  

  
  

P
ro

to
n

 
0

.1
18

 
-0

.0
03

 
-3

9
.3

3
3

 
 

5
.2

87
 

0
.7

6 

G
B

M
 

LN
22

9
 

P
ar

en
ta

l 
P

h
o

to
n

 
0

.0
26

 
0

.0
07

 
3

.7
14

 
0

.8
06

 
4

.0
00

 
 

 
 

 
P

ro
to

n
 

0
.0

56
 

0
.0

19
 

2
.9

47
 

 
2

.2
06

 
1

.8
1 

 
 

A
LD

H
+  p

o
p

u
la

ti
o

n
 

P
h

o
to

n
 

0
.1

39
 

-0
.0

08
 

-1
7

.3
7

5
 

0
.6

52
 

4
.0

00
 

 

 
 

 
P

ro
to

n
 

0
.0

93
 

-0
.0

04
 

-2
3

.2
5

0
 

 
6

.3
20

 
0

.6
3 

 
U

8
7

M
G

 
P

ar
en

ta
l 

P
h

o
to

n
 

0
.1

07
 

0
.0

02
 

5
3

.5
00

 
0

.6
31

 
4

.0
00

 
 

 
 

 
P

ro
to

n
 

0
.1

22
 

0
.0

09
 

1
3

.5
56

 
 

3
.0

74
 

1
.3

0 

 
 

A
LD

H
+  p

o
p

u
la

ti
o

n
 

P
h

o
to

n
 

0
.2

39
 

-0
.0

20
 

-1
1

.9
8

0
 

0
.5

29
 

4
.0

00
 

 

 
 

 
P

ro
to

n
 

0
.1

48
 

-0
.0

04
 

-3
7

.0
0

0
 

 
4

.9
70

 
0

.8
0 

 

6.3. The publication 113





115

Chapter 7

Discussion

7.1 Achievement of research aims

The aim of this thesis was to explore the TME as a driver of treatment resistance
and a source of combination therapy targets. I focused on two parts of the TME: the
acidic niche and the tumor itself with its heterogeneous cancer cell phenotypes. I
identified and analyzed two contributors to treatment resistance. First, I studied the
enzyme CAIX, which acidifies the neighborhood of the tumor, impairs the immune
response, and thereby reduces immune checkpoint inhibitor therapy effectiveness.
Then, I investigated irradiation-induced cellular plasticity and the resulting stem cell
dynamics in the tumor, which impact the tumor’s radioresistance. As stated in my
research aim, these potential resistance drivers and treatment targets were evaluated
using mathematical and computational models.

First, I proposed a hybrid model of the tumor, immune cells, and the TME, which
combined a partial differential equation model of substances present in the TME
and an agent-based model of the cells in the TME [39]. To my knowledge, this
was the first agent-based model including tumor-immune interactions, tumor cell
metabolism, and the resulting acidosis of the TME, allowing for the study of com-
bining immunotherapy with acidosis-targeting treatments such as CAIX suppres-
sion. I used this model to study tumoral CAIX expression as an immunotherapy
biomarker and a promoter of immunotherapy resistance. However, the model con-
tains other possible barriers to immunotherapy effectiveness that could be explored,
such as hypoxia, fibrotic stroma accumulation, and cancer stem cell dynamics. Fur-
thermore, the model can be easily extended to consider other putable factors im-
pacting treatment resistance such as regulatory immune cells that attenuate immune
response. This model realizes my first research aim by providing a computational
tool for immunotherapy biomarker and combination therapy target determination
and evaluation, which is available at https://github.com/JuliaGrajek/acidicT
umorABM3D. Moreover, it corroborates my first research hypothesis that including
tumor-immune-TME interactions in a model provides a promising framework for
ICI biomarker identification.

To achieve my second research aim, i.e. study the impact of CAIX expression on
the TME and immunotherapy effectiveness and evaluate it as a combination ther-
apy target, I worked with the above-mentioned model, supplemented with an or-
dinary differential equation model presented in [40]. By using two different model
types, I was able to tackle the research problem from different perspectives. The
hybrid model was much more complex than the ODE model, allowing for a holis-
tic exploration of the TME’s impact on immunotherapy effectiveness. Therefore, it
helped me determine new interesting research hypotheses. In line with my research
aim, I investigated the impact of CAIX expression on the TME, including the pH in
the TME, as well as the tumor burden, the quantity of the tumor infiltrate, and the

https://github.com/JuliaGrajek/acidicTumorABM3D
https://github.com/JuliaGrajek/acidicTumorABM3D
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compositions of the tumor and the immune infiltrate. The simulations support my
second research hypothesis that CAIX expression induces an immuno-suppressive
TME. The model successfully replicated the qualitative behavior of the tumor and
TME observed in a pre-clinical experiment. Moreover, it helped uncover interactions
between CAIX expression and the TME which had not been studied experimentally,
such as the composition of the immune infiltrate or PD-L1 expression. Also in line
with my second research aim, I evaluated how CAIX inhibition increased ICI efficacy
in heterogeneous tumor groups. Most importantly, I observed that CAIX expression
determines ICI treatment outcomes regardless of tumoral PD-L1 expression a treat-
ment begin. This is an important observation, as PD-L1 is a controversial biomarker
for ICI therapy, which is nowadays used in clinical practice, even though research
shows that it does not always discriminate responders from non-responders. My
simulations imply that CAIX expression might serve as a potential confounder of
PD-L1 measurements. By impairing immune infiltration and activity, it reduces
IFN-γ-induced PD-L1 expression. When inhibiting CAIX, however, the increased
immune activity might upregulate PD-L1 expression, increasing the need for ICIs.
Therefore, I believe that patients with CAIX-positive tumors should not be excluded
from anti-PD-1 therapy based on their pre-treatment PD-L1 expression alone. These
shortly summarized findings support my second research hypothesis that CAIX in-
duces an immunosuppressive TME, impairing immune response and ICI therapy
and serving as a putative confounder for other ICI biomarkers. These conclusions
postulated CAIX as a promising combination therapy treatment and motivated me
to further investigate this marker.

The computational model described above established the impact of CAIX ex-
pression on the TME and immune response quite well and offered some initial
promising insights into its impact on ICI effectiveness. However, incorporating a
more refined model of treatment with anti-CAIX and anti-PD-1 (see the pharma-
cokinetic model described in section 2.2. in [39]) proved difficult. Firstly, it added
additional parameters to the already quite complex model, impeding its calibration.
Secondly, the discrete timestep of 12h was too long for the investigation of the phar-
macokinetics model, as the drug molecules decayed much faster, making the ob-
servation of interesting dynamics futile. The second problem could be alleviated
by recalibrating the model to reduce the timestep, which might be an interesting
approach for future research, although it would significantly increase computation
time. However, I decided that a continuous model would be better suited to com-
plement my previous research, i.e. to investigate combination therapies with ICIs
and CAIX inhibition. In the planned research, I was mainly interested in non-spatial
outcomes, such as tumor burden after treatment, a target for which a differential
equation model would be sufficient. Additionally, I was hoping to supplement the
previous qualitative numerical simulations with quantitative research and mathe-
matical analysis of the model, for which continuous models are usually more appro-
priate. Hence, in [40], I developed an ordinary differential equation model based on
the insights from my previous modeling approach. I calibrated the model with in
vitro data from [37], showing, that the model can quantitatively reproduce experi-
mental findings and setting some realistic parameter values for further simulations.
Mathematical analysis of a simplified yet realistic version of the proposed model,
together with numerical simulations of the full model, led to the conclusion that
a combination of CAIX suppression and a sufficiently strong ICI dose (anti-PD-1
alone, anti-CTLA-4 alone or in combination) was synergistic in the way that it led
to a complete and durable response. Monotherapies or combinations of just ICIs, on
the other hand, resulted in tumor recurrence after treatment interruption, even after



7.2. Limitations and future perspectives 117

initial reductions in tumor burden. This model and its analysis substantiate thus
my third research hypothesis, concerning the efficacy of transient combinations of
anti-CAIX and ICIs.

Finally, I also investigated factors impacting radioresistance, in particular, cellu-
lar plasticity and the resulting CSC dynamics in irradiated tumors, in line with my
fourth and final research aim. This work was motivated by experimental data col-
lected by an interdisciplinary research group for a study led by Dr. Claudia Peitzch
from the National Centre for Tumor Diseases in Dresden, Germany. This research
group compared the impact of photon and proton irradiation on CSC dynamics.
Some of the data, in particular flow cytometry analysis data concerning the dy-
namics of populations with putative stem cell markers (ALDH, CD44, CXCR4 and
CD133), was in the form of time series, offering a possibility for mathematical mod-
eling. In particular, the data on the ALDH+ and ALDH- population was of interest,
as we also had data concerning the survival fraction of ALDH+ and ALDH- cells
per irradiation dose available, facilitating model calibration. My aim with this mod-
eling was to dive deeper than the in vitro experiments and try to infer whether the
observed dynamics could be explained by cellular phenotype plasticity, as stated
by the fourth and final research hypothesis of this thesis. Therefore, I proposed an
ordinary differential equation model of CC and CSC and calibrated it with the col-
lected in vitro data, with the assumption that ALDH was a perfect stemness marker.
This is of course a simplification, but the data concerning ALDH+ and ALDH- dy-
namics was the only data collected that was suitable for the calibration of our model
and provided a reasonable estimate of CSC dynamics. Our modeling revealed that
both, plasticity events and reverse plasticity events vitally impacted ALDH+ and
ALDH- dynamics, and implied that proton irradiation induced a lower rate of plas-
ticity events than photon irradiation, complementing the conclusions from the ex-
perimental part of our study [56].

In conclusion, I believe that the work presented in this thesis and the described
publications are in line with the research aims stated in this thesis and the obtained
results and conclusions support my research hypotheses.

7.2 Limitations and future perspectives

The limitations of the immunotherapy models are precisely stated in the discussion
sections of [39] and [40]. In this section, I will just mention the most important limita-
tions and present some perspectives for further research. Most critically, it should be
noted that while the models suggest some interesting interactions between CAIX in-
hibition and immunotherapy effectiveness, and propose promising research targets,
they are not fully validated and thus, the conclusions derived from them require
further verification. The validation of the model predictions on a distinct data set
was not possible due to the lack of data availability concerning CAIX expression
and ICI treatment. However, I believe that my research substantiates the investiga-
tion of CAIX as a combination therapy target and might motivate the collection of
appropriate data. This illustrates one of the applications of in silico modeling, where
research hypotheses might be tested in a relatively quick, inexpensive and ethical
way, to identify those, which should be pursued further.

An interesting observation based on the simulations with the hybrid model pre-
sented in [39] was the abundant stroma accumulation in CAIX KO tumors, which
confounded decreased tumor volumes. Interestingly, stroma has been postulated
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to have either pro- or anti-tumorigenic properties, depending on the immune infil-
tration [83]. Studying the impact of stroma on ICI was not inside the scope of the
study presented in [39], but it seems to be another promising factor, whose impact
on the combination of anti-CAIX and ICI therapy could be evaluated. In particular,
our model could be used for such an investigation, if calibrated to represent a tumor
type linked to chronic inflammation-induced fibrosis, such as lung cancer [104].

In [40], we observed a lower CSC fraction in the CAIX KO tumors in some pre-
liminary simulations. Again, investigating CSC dynamics after CAIX inhibition was
out of scope in this study, but since CSC are believed to be the main drivers of tumor
progression and treatment resistance, this constitutes another research idea worth
pursuing. This is further substantiated by some clinical studies, which propose that
CAIX inhibition sensitizes tumors to chemotherapy, where CSC are usually believed
to be the main resistance and recurrence factors. For a short explanation of these
studies, see the discussion section of [40].

Finally, the model of cellular plasticity was developed for the purpose of deep-
ening our understanding of the experimental data gathered in [56]. Therefore, it
focused on the interactions between radiotherapy and cellular plasticity, ignoring
the impact of other factors of the TME. As mentioned in the introduction, the TME
also induces plasticity events, and in turn, the distribution of CSC in the tumor heav-
ily impacts other parts of the TME. Hence, I believe that further exploration of the
TME and cellular plasticity could deepen our understanding of radioresistance and
increase radioresponse rates.

In conclusion, while my research has contributed to the clarification of the impact
of the TME on treatment resistance, it has also unveiled new interesting research
questions. Therefore, I believe that the interplay between the TME and treatment
resistance remains a promising topic for further exploration.
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