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Proteins and Peptides Identification from MS/MS Data 
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Protein identification in biological samples is the most important task in proteomics. In the 
past decade, mass spectrometry (MS) became the method of choice for the identification 
of proteins. The purpose of this paper is to give an overview of MS-based protein iden-
tification methods, discuss their advantages and limitations and to highlight some recent 
advancements in this field.
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1. Introduction

Proteomics is the study of the proteome. The term proteome defines the entire protein 
complement of the genome. Thus, the objective of proteomics is large-scale analysis 
of protein function, structure, post-translational modifications, cellular localization 
and protein-protein interactions. Proteomics is closely related to genomics, but is 
more complex because, while the genome is constant, the proteome composition 
varies depending on tissue type, life cycle stage and environmental conditions. As 
proteins play crucial roles in virtually all biological processes, their dynamically 
changing expression can be treated as a sensitive indicator of the organism’s state. 
This is why clinical research also may benefit from proteomics by both, the identifica-
tion of new drug targets and the development of new diagnostic markers. Although 
many different analytical techniques are used in protein analyses, including one- 
and two-dimensional gel electrophoresis [1], liquid chromatography [2] and X-ray 
crystallography [3], current high-throughput proteomic studies mostly rely on mass 
spectrometry [4], especially in applications related to protein identification. In this 
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review, we describe the principles of different strategies for the MS-based protein 
identification and discuss their strengths and limitations.

2. Peptides and Proteins

Peptides and proteins are biomolecules made of amino acids. All of the 20 naturally 
occurring amino acids contain a central carbon atom to which a hydrogen atom, the 
amino (NH2) and carboxyl (COOH) groups and an amino acid-specific side chain are 
attached. Peptide is a molecule composed of at least two amino acids held together 
by the peptide bond between the amino and carboxylic acid groups. The joined 
amino acids in the peptide are called residues. The first residue in the chain is called 
N-terminus and the last C-terminus. Although there is no rigid rule, a chain length 
longer than 30 to 40 amino acids is called a protein. The primary structure (i.e. the 
amino acid sequence) is a fundamental property of a protein as it determines all other 
biochemical and biophysical properties. Knowledge of the primary structure is also 
crucial for protein identification. 

3. Mass Spectrometry

Mass spectrometry is an analytical technique based on measurement of mass to 
charge ratio (m/z) of ions. The mass spectrometer consists of three basic elements: 
an ion source which converts neutral sample molecules into gas phase ions, a mass 
analyser which separates the ions depending on their m/z value and a detector that 
registers the number of ions of each species. The analysis is carried out under high 
vacuum, and the whole process is controlled by a computer system which is also 
responsible for data storage, processing and visualization. The data output is in the 
form of a mass spectrum, usually is presented as a plot of m/z values of the detected 
ions versus their abundances (Fig. 1). The peaks in the spectrum can represent either 
intact molecular ions or their smaller fragments.

Fig. 1. An example mass spectrum of a complex biological sample. The data was collected on an
high-resolution FT-ICR mass spectrometer
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 Application of mass spectrometry to the analysis of proteins became possible 
after the development of ‘soft ionization’ methods, particularly ElectroSpray Ioni-
zation (ESI) [5] and Matrix-Assisted Laser Desorption/Ionization (MALDI) [6]. In 
ESI the solvent containing the analyte is dispersed into a fine aerosol in presence 
of electric field, while in MALDI laser pulses are used to sublimate and ionize the 
sample molecules out of a dry, crystalline matrix. Both the techniques allow to 
transfer large and thermally labile biomolecules into gas phase without leading to 
their fragmentation. If the analysed molecules have functional groups that readily 
accept protons, as in proteins and peptides, then positive ionisation is used. The m/z 
value of a protonated molecular ion is calculated according to the formula (1): 

   m z
M n H

n
/ = + ⋅ ,  (1)

where M is the molecular mass of the molecule, H is the mass of proton and n is the 
number of attached protons. Multiply charged ions are usually observed for large 
molecules when ESI is used, whereas MALDI results predominantly in generation 
of the singly charged ions.
 The performance of a mass spectrometer depends mainly on the capabilities 
of the used mass analyser. Recent improvements in analysers parameters, such as 
sensitivity, mass measurement accuracy and resolving power were essential for wide 
application of the mass spectrometry in the field of proteomics. The four basic types of 
analysers used in proteomics research are: quadrupole [7], ion trap [8], time-of-flight 
(TOF) [9] and orbitrap [10]. Less common is the usage of the most powerful, but 
expensive and technically demanding Fourier Transform Ion Cyclotron Resonance 
(FT-ICR) [11] analyser. 
 Determination of peptide sequences requires two steps of mass spectrometry, 
separated spatially or in time. In the first step, one ion species (the parent or precursor 
ion) is selected and then is fragmented inside the spectrometer, usually by collision 
with an inert gas. Next, the resulting fragment ions are registered in the second step, 
producing a MS/MS spectrum. Instruments allowing such analysis are called tandem 
mass spectrometers. If the MS stages are separated in space, then the spectrometer 
must be equipped with at least two analysers. This the case of triple-quadrupole, 
quadrupole-TOF (Q-TOF) and TOF-TOF instruments. Trapping instruments are 
capable of performing time-separated tandem spectrometry in a single analyser.
 Recently, mass spectrometers are often directly coupled with a High Perform-
ance Liquid Chromatography (HPLC) system. In such case, the LC-MS run consists 
of the repeated MS measurements of the subsequent fractions of the sample elut-
ing from the chromatographic column. Chromatographic separation of the sample 
compounds prior to the MS analysis results in increased sensitivity and allows to 
identify analytes which might not be distinguished because of close mass to charge 
ratio.
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4. Protein Identification by Mass Spectrometry 

In general, unambiguous identification of intact proteins by mass measurement 
alone is a difficult task. Therefore, most proteomics experiments are performed ac-
cording to the ‘bottom-up’ strategy, which relies on peptide-level information. In 
this approach proteins are first digested by a specific proteolytic enzyme, and then 
the peptides are analysed using MS. The most commonly used enzyme is trypsin, 
which cleaves the sequence on the C-terminal side of arginine and lysine residues, 
unless the subsequent residue is a proline. The enzyme specificity enables reliable 
identification based on even a small subset of peptides, covering only partially the 
full sequence of the protein.
 Historically, the first available method of protein identification was Peptide 
Mass Fingerprint (PMF) [12]. In this technique, proteins are identified by matching 
the list of measured masses to the list of peptide masses generated by an in silico 
digestion of all entries of a protein sequences database. Unfortunately, this approach 
is ineffective when applied to protein mixtures, and can be used only in conjunction 
with prior sample separation by either one- or two-dimensional electrophoresis.
 Direct analysis of complex biological samples containing up to thousands of 
proteins involves the usage of tandem mass spectrometry, in which both intact mass 
of the peptide and masses of the fragment ions generated inside the spectrometer 
by the dissociation of the peptide bonds are measured. Tandem mass spectrometry 
data are usually interpreted in a computer-aided manner, and the currently used 
algorithms can be divided into three main categories: database searching, de novo 
sequencing and sequence tags. Each of these approaches relies on the knowledge 
of peptide fragmentation rules, which allows to predict the ions m/z values in the 
MS/MS spectrum of a given amino acid sequence.

4.1. Peptides Fragmentation Rules

A number of peptide fragmentation methods have been developed, including Collision 
Induced Dissociation (CID) [13], Surface Induced Dissociation (SID) [14], Electron 
Capture Dissociation (ECD) [15], Electron Transfer Dissociation (ETD)[16] or Infra-
Red MultiPhoton Dissociation (IRMPD) [17]. Currently, majority of commercially 
available tandem spectrometers use low-energy CID, in which the fragmentation is 
induced by collisions with an inert gas, most commonly argon or helium.
 As shown in Fig. 2, in low-energy CID fragmentation mainly occurs along the 
peptide backbone. There are three different types of bonds that can be dissociated by 
collisions: the NH-CH, CH-CO, and CO-NH bonds. Each bond breakage produces 
two ions, and only the charged one is measured by the mass spectrometer. The charge 
can stay on either of the two sides of the breakage, which means that there are six 
possible fragment ions for each amino acid residue. The charged fragments contain-
ing the N-terminal residue are denoted with letters a, b, c, and those containing the 
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C-terminal residue with letters x, y, z [18]. Numerical subscripts of the fragment ions 
indicate the positions of the amino acid residues at which the bond cleavage have 
occurred.

Fig. 2. Schematic representation of the peptide fragmentation process in low-energy CID. Ri denotes
the side chain of the ith residue. The arrow directions indicate the charged fragment

 Fragment ions generated by dissociation of a single bond give rise to series of 
peaks in the MS/MS spectrum. Mass differences between adjacent peaks of the series 
correspond to amino acid residues masses, thus are sequence-specific (Fig. 3). Of 
the six types of ions, b and y are formed more frequently, especially for tryptic peptides. 
Often, a ions are also formed along with b ions (by the loss of CO from b). Addi tionally, 
sequence-specific peaks caused by neutral losses from the primary six types of ions 

Fig. 3.  An example MS/MS spectrum for the peptide LADEIIIR. Sequence identifications based on y 
and b ion series are equivalent. The C-terminal residue (R) is given by the position of the y1 ion. The 
N-terminal residue (L) can by identified on the base of the mass difference between the precursor ion

and the peak y7
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can be observed in the spectrum. The most common losses are of ammonia and 
water from the b and y ions. In general, ions formed by simultaneous cleavage of 
two bounds (internal ions) do not carry sequence-specific information. A special 
case are immonium ions, which are internal fragments with just a single side chain, 
formed by a combination of a type and y type cleavage. Peaks of such ions are not 
sequence-specific, but they can be used to confirm of the existence of residues. 

4.2. Database Search Algorithms

Database searching is currently the most widely used method for peptide and protein 
identification. In this approach, all protein sequences in a database are first in silico 
digested into proteolytic peptides. Next, theoretical MS/MS spectra are computed 
for peptides with masses falling into a preselected tolerance window around the 
measured mass of the precursor ion. The experimental spectrum is then compared 
to the theoretical spectra of database candidate peptides, and the best matching one 
is selected. The process is repeated for each registered MS/MS spectrum, yielding 
sequences of the peptides and the corresponding proteins present in the mixture.
 A number of database search algorithms have been developed: SEQUEST [19], 
MASCOT [20], SCOPE [21], PEPHMM [22], OLAV [23], PROBID [24], OMSSA 
[25]. Different software tools use different criteria to determine similarity between 
the experimental and the theoretical spectrum. Here two of them will be shortly 
presented: SEQUEST – the earliest used software for protein identification, and 
MASCOT – one of the most widely used tool employing the database searching 
approach.
 SEQUEST uses a two-step scoring scheme. The preliminary score restricts the 
number of analyzed sequences to 500. This score sums the peak intensities of frag-
ment ions matching the predicted sequence ions. It also takes into account continuity 
of the ion series and the presence of immonium ions. The second score is cross-cor-
relation of the theoretical and the experimental spectrum. The correlation function 
is calculated according to the formula (2):

   f x yi i
i

( ) ,τ τ= ⋅ +∑  (2)

where τ is a displacement value between the two signals. If two signals are the same, 
the correlation function should maximize at τ = 0, where there is no offset between 
the signals. The final score attributed to each candidate peptide sequence is value 
of the function at τ = 0 minus mean of the cross-correlation function over the range 
–75 < τ < 75. The first ranked spectrum is then assumed to represent the correct se-
quence. Additionally, the normalized difference between the best score and each of the 
others, ΔCn, is produced. This value is important in distinguishing the best sequence 
from the others. If a match is reasonably unique, this value should be large. 
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 MASCOT considers matches between the peptide from the database and the 
ions from the MS/MS spectrum as random events. For each peptide, probability that 
its matches occur randomly is calculated using an empirically generated distribu-
tion of the fragment ion probabilities in the database. The probability of the match 
should be the smallest for the correct amino acid sequence, because most of peaks 
in the theoretical spectrum will be present in the MS/MS spectrum. Relying on this 
probability, a score for every peptide is calculated according to the formula (3):

   Score P= − ⋅ ( )10 10log  (3)

where P is the probability that the observed match is a random event. Because the 
protein sequences in the database are not random, the best score does not necessarily 
lead to a correct match. MASCOT offers two statistical thresholds that discriminate 
between correct and incorrect peptide identifications. First of them, the Mascot 
Identity Threshold (MIT), is calculated according to the formula (4): 

   MIT
N

= − ⋅ ⋅⎛
⎝⎜

⎞
⎠⎟

10 2010log ,
α  (4)

where α is probability of a random peptide match and N is number of the peptide 
candidates. As the quality of the measured MS/MS spectrum is not always ideal (more 
in chapter 4.5), it may not be possible to reach the identity threshold score, even if the 
best match in the database is a clear outlier from the distribution of random scores. 
To assist the identification of such outliers Mascot Homology Threshold (MHT) is 
also reported. This threshold is an empirical measure of whether the match is an 
outlier from the distribution of scores of the candidate peptides. Unfortunately, an 
exact definition of the MHT was not published by the software authors.

4.3. De novo Peptide Sequencing Algorithms

Database algorithms are useful only for identification of the peptides present in a 
protein database. There are situations when an adequate database is not available or 
the full sequence of the analyzed protein is unknown so far. In that case, the only 
way to recognize a peptide is the de novo sequencing. It must be stressed, that the 
de novo sequencing is a definitely more difficult task than database searching, as the 
algorithm tries to predict the amino acid sequence directly from the MS/MS spectrum. 
This means, that in the de novo sequencing all possible sequences may be generated 
regardless of their biological relevance. To avoid false results, criteria to determine 
the likelihood function between the candidate peptide and the spectrum peaks must 
be very restrictive. Thus, the de novo sequencing results can be used to validate the 
database search results. Significant similarity between the result of that two methods 
could be taken as evidence that the sequence from the database is correct.
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 As in the case of database methods, there are many de novo algorithms: PEAKS 
[26], PEPNOVO [27], LUTEFISK [28], SHERENGA [29], PROBSEQ [30], NOVO-
HMM [31]. Here two of them will be shortly described: SHERENGA – the earliest 
used de novo software, and PROBSEQ – one of the most efficient tools.
 SHERENGA, like most de novo algorithms, employs the spectrum graph ap-
proach for generating of the sequence candidates. This transformation makes it easy 
to explain the relation between adjacent peaks in MS/MS spectrum. Following the 
fragmentation rules, if one fragment ion has one more amino acid than another, the 
m/z difference between the two corresponding peaks of the spectrum will be equal 
to the mass of the amino acid divided by the charge state. The peaks in the spectrum 
serve as vertices in the spectrum graph, while the edges of the graph correspond to 
linking vertices differing by the mass of the amino acid. The de novo peptide se-
quencing problem is defined as finding the longest path in the resulting acyclic graph. 
SHERENGA uses a probabilistic model to evaluate probability that a peptide under 
consideration may produce an observed spectrum. The program allows the situation 
in which not all peaks in the spectrum are present. Having the knowledge from the 
learning dataset, SHERENGA uses ‘a premium for explained ions’ and ‘penalty for 
unexplained ions’ approach.
 PROBSEQ has a different approach to obtain the information from the spectrum. 
In spite of creating the spectrum graph, PROBSEQ creates a probabilistic model 
based on the Bayesian theory according to the formula (5):

   Pr( / )
Pr( ) Pr( / )

Pr( )
.Seq Spec

Seq Spec Seq

Spec
= ⋅  (5)

The best match is given by the sequence (Seq) that maximizes probability on the 
left-hand side of equation (5). The Pr(Seq) is the prior probability of observing 
a sequence (Seq), based on the natural abundances of its constituent amino acids 
and the preference for C-terminal residues. The Pr(Spec/Seq) is probability that 
the sequence under consideration (Sec) could give rise to the observed spectrum 
(Spec). The Pr(Spec) is just a normalization variable. In the first step, PROBSEQ 
genera tes a population of peptides that are consistent with the intact mass of an 
unknown peptide. The implementation used in the software does not perform an 
exhaustive search of an entire space, but simulates it by sampling of possible peptide 
sequences through a terminated Markov Chain Monte Carlo algorithm. Initially, 
a trial set of solutions is constructed by sampling from a prior distribution. For 
those candidate sequences the likelihood calculations are proceeded. Basing on 
the results, in the next step, the list of peptides is modified by sequence transitions 
such as: reversal, rotation, permutation or replacement of a contiguous subsequence 
with randomly chosen end-points. The result of de novo exploration is a number 
of candidate peptide sequences that may account for the fragmentation spectrum 
and precursor mass.
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4.4. Sequence Tags Algorithms

Sequence tagging combines two of the previously described approaches. The first 
step is the de novo sequencing investigation which provides a partial sequence, and 
then the database searching is done in order to find the full sequence. An example 
of a sequence tag is [343.12]AGPVIKED[195.66], where the numerical values in 
the brackets represent masses of amino acid subsequences remaining unidentified 
because of the lack of information in the MS/MS spectrum. The above tag example 
is typical, as the fragmentation occurs more often towards the middle of a peptide 
rather than at its ends. The sequence tagging programs consolidate advantages of both 
previous methods. The results are validated by the database knowledge of peptides 
sequences, and on the other hand, generated peptides are selected with extra MS/MS 
spectrum information. Currently, there are several well known sequence tagging 
software tools: MS-SHOTGUN [32], FASTS [33], OPENSEA [34], GUTENTAG 
[35], SPIDER [36] and DeNovoID [37]. 

4.5. Sources of Failure to Identify Correct Peptide Sequences

There are several reasons why the peptide identification tools fails to assign cor-
rect peptide sequences to experimental MS/MS spectra. Limited sensitivity, mass 
measurement accuracy and resolving power of the used instrument in conjunction 
which chemical and electronic noise may lead to low quality and incomplete spectra, 
which cannot be correctly interpreted. Errors in low-level spectra processing, result-
ing in incorrectly determined charge states or monoisotopic masses of the precursor 
ions are also common causes of incorrect identifications. Another problem is the 
fact that some MS/MS spectra originate from non-peptide sample impurities or are 
result of the simultaneous fragmentation of the different peptide ions having similar 
m/z values.
 It can be presumed that improved preprocessing methods [38, 39] and algo-
rithms allowing to remove poor quality spectra from the dataset prior the submis-
sion to the peptide identification tool [40, 41] should considerably lower the false 
identification rates. A more fundamental limitation of the identification process 
performance emerge from deficiencies in the commonly used scoring schemes 
and the theoretical fragmentation models. For most peptides, cleavages at the 
amide bonds are predominant, producing a series of a b and y ions. However, 
there are peptides, where the enhanced cleavage occurs at just one or two amino 
acid residues. Most of the used database search algorithms use simple fragmenta-
tion models, based on the assumption that peptide bonds dissociate in an uniform 
manner, hence, peptides with unusual fragmentation patterns are not sequenced 
well. To better accommodate these peptides more complex fragmentation models, 
such as the presented below ‘mobile proton’ model, must be incorporated into the 
identification tools.



44 L. Raczyński, T. Rubel, K. Zaremba

4.6. ‘Mobile Proton’ Model

The investigation of fragmentation process, performed at variety of conditions, 
allowed to formulate the ‘mobile proton’ model [42, 43]. According to the model 
assumption, the fragmentation of peptides requires the involvement of a proton at 
the cleavage site i.e. the cleavages are ‘charge-directed’. Protonation at the amide 
bonds (Fig. 4) initiates ‘charge-directed’ cleavages of the backbone and leads to the 
b and y ions generation. Second possibility is that an amino acid side-chain tightly 
binds a proton (Fig. 4), and the additional energy will be required to move that pro-
ton from the basic side-chain to the peptide backbone to induce dissociation. This 
is the situation when the basic amino acid (arginine, lysine, histidine) is present in a 
peptide sequence. Location of proton/protons in the peptide depends on the amino 
acid composition versus the number of protons. If a basic amino acid occurs in pep-
tide sequence, proton will be sequestered by its amine group, so called ‘non mobile 
proton’. In turn, proton bound to N-terminal of peptide will need much lower energy 
to migrate and induce a dissociation, so called ‘mobile proton’. Under high energy 
dissociation conditions, there are plenty of peaks in spectrum, and fragmentation 
pattern becomes unpredictable. That way, in typical experiments, low energy colli-
sion is used to produce fragment at amide bond generally. 

Fig. 4. Protonation sites of a short peptide

 The ‘Mobile proton’ model was used by several groups to create a theoretical 
spectrum. Shutz et al. [44] derive a new classification scheme, the ‘relative proton 
mobility’ scale (RPM), which expands the current ‘mobile proton’ model. Peptides 
are classified into three groups. If the number of charges is less than or equal to the 
number of arginine residues in the peptide sequence, it is classified as ‘non-mobile’, 
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‘mobile’ if the number of charges is greater than the total number of basic residues, 
otherwise, ‘partially mobile’. They built a simple, linear model for predicting ion 
intensities using the RPM scale. The quality of the predictions varies depending 
on the peptide charge state giving better results for single-charged peptides than 
for double-charged peptides. Quality of the prediction varies also according to the 
mobility state with best results for ‘mobile’ peptides and the worst for ‘non-mobile’ 
peptides.
 Zhang [45] followed a different approach and predicted product ion spectra, 
based on the ‘mobile proton’ model of peptide fragmentation, using a kinetic model. 
The kinetic model describes the reaction between molecules involving many compet-
ing pathways, such as the case of peptide fragmentation. The model includes most 
fragmentation pathways described in the literature. The mathematical model is able 
to predict peptide CID spectra, achieving reasonable accuracy for the fragment ion 
intensities for both, singly and doubly charged peptide parent ions. 

5. Conclusions

Proteomics is a domain of science which is developing very quickly. Its development 
depends on the possibilities offered by the computer techniques of data analysis 
and data mining. More effective and powerful peptide identification algorithms are 
still created. However, the peptides sequencing still remains a difficult problem and 
subject, which we are unable to solve efficiently. The significant achievement of 
the last few years has been the model of a fragmentation of a peptide - the ’mobile 
proton’ model. The study of that problem is in progress. Positive results which con-
firm proposition applied in the model, motivate to put more efforts and work into 
this subject.
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