
Biocybernetics and Biomedical Engineering
2008, Volume 28, Number 4, pp. 59–73

 * Correspondence to: Norbert S. Żołek, Institute of Biocybernetics and Biomedical Engineering, 
Polish Academy of Sciences, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland, e-mail: norbert@ibib.waw.pl
Received 30 January 2008; Accepted 18 August 2008

Correction of Anisotropy Coefficient in Original Henyey 
Greenstein Phase Function for Monte Carlo Simulations 
of Light Transport in Tissue 

NORBERT S. ŻOŁEK*, STANISŁAW WOJTKIEWICZ, ADAM LIEBERT

* Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 
Warsaw, Poland

In this paper, two different methods for calculation of polar deflection angle are compared. 
The scattering angle is defined by numerical inversion of cumulative distribution of the 
original Henyey-Greenstein phase function. Results of the Monte Carlo simulations obtained 
in this manner are compared with results of simulations in which the analytical inversion 
of the probability density for the cosine of the deflection angle is applied. Investigations 
are carried out for media with optical properties similar to these typical for living tissues 
as well for very small source detector separations (50–500 µm), i.e. in conditions, in which 
the diffusion theory can not be applied. The distributions of visiting probability of photons 
penetrating into the semi-infinite medium are obtained for various methods of phase function 
calculation. It can be observed that the methods of calculation of polar deflection angle 
influence significantly spatial distributions of reflectance and visiting probability obtained 
by Monte Carlo simulations. The approximated transformation of the anisotropy coefficient 
used in simulations carried out with the use of the original Henyey-Greenstein function to 
effective anisotropy coefficient is presented; that makes possible comparisons of the results 
of Monte Carlo simulations obtained by using different methods.

K e y w o r d s: Monte Carlo, phase function, light transport

1. Introduction

The Monte Carlo method is frequently used in modeling of light propagation in tur-
bid media [1–11]. The method can be applied for complicated boundary conditions, 
which are difficult to analyze using radiative transport equation [3, 12]. The Monte 
Carlo simulations are used particularly for complicated nonhomogeneous media 
with nonisotropic scattering and in the cases of small source–detection separations, 
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i.e. in situations, for which diffusion equation approach is improper [13, 14, 15]. 
The method can be also applied for modeling of fluorescence processes [11, 16] and 
quasi-elastic Doppler scattering [5, 17].
 Monte Carlo modeling of light propagation is based on calculation of the single 
photon paths in a medium, the optical properties of which can be determined by the 
absorption and scattering coefficients (µa and µs). The trajectory of photon consists 
of straight segments between the consecutive scattering events. The distance be-
tween the two scattering events, called free pathlength, is randomly sampled by an 
exponential distribution dependent on both absorption coefficient  µa and scattering 
coefficient µs. After every scattering event, a new direction for the photon propaga-
tion, represented by the directional cosines, can be determined. The azimuthal angle 
is calculated using the random number with the uniform distribution in the range 
[0;2�). Probability distribution of the polar deflection angle can be approximated by 
the Henyey-Greenstein (HG) phase function of the following form: 
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where φ ∈ [0;�] is the polar deflection angle (Fig. 1) and  g ∈ [–1;1] – anisotropy 
coefficient. This function is used to describe scattering of light in galaxies [18], but 
it also allows to approximate scattering of light in living tissues [19, 20]. The HG 
phase function describes the probability of the polar deflection angle after each scat-
tering event. The event depends on anisotropy coefficient g, which is equal to the 
mean cosine of scattering angle, i.e. g =<cos(φ)>. To determine the random number, 
distributed according to the phase function (eq. 1), the probability integral transform 
[21] is commonly used. This method requires determination of the random variables 
with uniform distribution u ∈ [0,1], and the transformation x = F –1(u), where F is 
the cumulative distribution of phase function.
 It is worth noting that, when the function (eq. 1) is interpreted directly as a probability 
density function of polar deflection angle for the Monte Carlo simulations, the obtained 
distribution of polar deflection angle is not correct for isotropic scattering [22]. 
 Definition of the directional cosines of a new direction of the photon requires 
calculation of at least cosine of the polar deflection angle and cosine of azimuthal 
angle [23]. Such an operation is, however,  time consuming, especially in such highly 
scattering media as tissues; it is because of large number of occurring scattering 
events [23]. The definition (eq. 1) integrated over solid angle gives the probability 
distribution of the form [18]:
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which is analogous to probability of the cosine of angle [24] (not the angle values 
as in (eq. 1)):
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where η = cos(φ). This form of the HG phase function (eq. 3) allows to derive the 
analytical inversion of cumulative distribution and leads to direct calculation of the co-
sine of the polar deflection angle [24]. This approach was implemented in the MCML 
code [25, 26], and is commonly used for modeling of light transport in tissues.
 Recently, Binzoni et al. [22] reported on differences in the spatial distribution 
of reflectance obtained by the Monte Carlo simulations at large source-detector 
separations. The calculations were carried out using different HG phase function 
definitions.
 The aim of our study was to compare the spatial distributions of reflectance at 
small source-detector separations. To this end, the transformation of the anisotropy 
coefficient to effective anisotropy coefficient is derived. The anisotropy coefficient 
was applied in the calculation of deflection angle using the original HG function 
(eq. 1). Such an approach makes possible analysis of the results obtained by the 
Monte Carlo simulations for different definitions of the HG phase function.

2. Theoretical Background

2.1. Probability Density Function Calculated Using the Original Hanyey-Greenstein
       Function

The probability density function describing the polar deflection angle was defined in 
[18] by equation (1). The cumulative distribution of (eq. 1) can be defined as :

   F x p d
x

φ ϕ ϕ( ) ( )= ∫
0

, (4)

Fig. 1. Scheme of scattering event with polar deflection angle (φ) and azimuthal angle (α). Incident
direction – ei, direction after scattering es
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where x ∈ [0;�]. Inversion of Fφ (x) cannot be obtained analytically. Only the numeri-
cal inversion of cumulative distribution of the original HG phase function based on 
the look-up tables with an additional linear interpolation between two neighboring 
points can be performed. This procedure enables calculation of the cosine of random 
angle φ by equation (5):

   c F
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2.2. Probability Density Function of the Cosine of Polar Deflection Angle 

The definition proposed in [24] gives a direct probability distribution of the cosine 
of polar deflection angle (eq. 2). In comparison to the probability of this angle, it has 
the cumulative distribution in the form:
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For this distribution, the inverse function can be obtained analytically:
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This method of calculation of the cosine of polar deflection angle was implemented 
into the MCML code [25, 26]. 

2.3. Correction of the Cosine of Polar Deflection Angle

The accuracy of definition (eq. 1) was examined by fitting the function ca (φ) (eq. 7) 
to the data sampled from the distribution of cosine defined by c (φ) (eq. 5). In order 
to fit the cosine function to the sampled data, a small modification of the definition 
of Fφ (x) (eq. 4) was necessary. The function ca (φ) returns values of the cosine cor-
responding to the values of cosine for angles [�;2�]. To provide the same increasing 
parts of the cosine function in the both cases, the cumulative distribution c (φ) (eq. 4) 
takes the form: 
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where x ∈ [�;2�].
 The 1000 sampled values of Fs

–1
 (ξ ) were used to calculate c (φ) for the fitting proce-

dure. Anisotropy coefficient ga in analytical expression ca (φ) was chosen to minimize the 
root mean square error between analytical expression ca (φ) and the results of numerical 
inversion of cumulative distribution of the original HG phase function c (φ). 
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3. Monte Carlo Code for Simulation of Light Transport

The weighted Monte Carlo algorithm implemented for this work is based on the 
MCML code [25, 26]. The code was modified to collect additional information 
about each trajectory of the photons. Due to the radial symmetry around the source 
axis, the photons escaping from the medium are collected within the ring shaped 
detection areas. Detailed information about the trajectories was used to determine 
the spatial distribution of the visiting probability, which is defined as the probability 
that the photon visits a voxel during its travel from the point of its injection to the 
point of its escape. 
 The photon trajectories were rotated around the source axis to have the source 
position and all the detection positions on a one plane. After the rotation, the detec-
tion area became a one-dimensional section (of a length equal to the thickness of 
the detection ring) instead of the ring. The trajectories were projected onto the 2D 
plane perpendicular to the surface of the medium and crossing the source and the 
detection positions. The projection plane was divided into pixels of the fixed size, and 
the trajectories were drawn in the 2-dimensional space of the pixels as straight lines 
between the consecutive scattering events using the Bresenham algorithm of the line 
drawing [27]. Each trajectory was added to the distribution with its weight equal to 
the weight of the respective detected photon. By normalizing to maximal value the 
visiting probabilities of the simulated medium by the photons were obtained. The 
number of the emitted photons in each case was 2 × 107. The thickness of the ring 
shaped detection areas was 5 µm. 
 The projection plane was divided into pixels of a size equal to 3r/200 each (where 
r is source-detector separation). The size of the projection plane was 3 times larger 
than the source-detector separation distance in the horizontal direction and 4 times 
larger than the source-detector separation in the vertical direction.
 The calculation of the polar deflection angles was performed using two definitions 
of the HG function: generating the polar deflection angle according to the distribu-
tion (eq. 1), and generating the cosine of polar deflection angle in accordance with 
the original MCML code (eq. 2).
 The C language code was compiled using the gnu c compiler (http://gcc.gnu.
org/). The simulations were run on a PC class computer (AMD AthlonX2 4800) 
under control of the “Windows XP” operating system.

4. Results

The differences between the values of the cosine of polar deflection angle generated 
by the analytical expression ca (φ) and the cosine c (φ) generated by the direct inver-
sion using formula (eq. 5) for various g are shown in Fig. 2. Figure 2A represents 
distributions of the cosine for g = 0 and Fig. 2B represents distributions for g = 0.2, 
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0.5, 0.8, 0.9, 0.95, 0.995. The solid depict the numerically calculated distribution of 
the cosine of polar deflection angle c (φ). The dashed lines show the distributions of 
the cosine of polar deflection angle obtained on the basis of analytical inversion  ca (φ). 
The differences of the obtained distributions are large for all anisotropy coefficients 
g. Figure 2A shows how analytical inversion ca (φ) for the isotropic scattering differs 
from the cosine values obtained on the basis of numerical inversion c (φ).

Fig. 2. Distributions of the cosine of polar deflection angle for different anisotropy coefficients obta-
ined by the analytical inversion ca (φ) (eq. 7) – dotted lines, distributions obtained by the numerical 
inversion c(φ) (eqns. 5, 8) – solid lines. A: obtained for isotropic scattering – g = 0; B: obtained for
 anisotropic scattering  g = 0.2 – �, g = 0.5 – �, g = 0.8 –�, g = 0.9 – �, g = 0.95 – �, g = 0.995 – �  

 The differences of the photon directions densities within a unit sphere after scat-
tering event are presented in Fig. 3 for different anisotropy coefficients. The direc-
tion of incident photons is parallel to z axis and scattering event occurs at the origin. 
Number of simulated photons is 10000. The photon direction density of isotropic 
scattering is presented in the upper row of Figure 3. As expected from theory, when 
the function (eq. 1) is directly interpreted as a probability density function of polar 
deflection angle for the Monte Carlo simulations, it does not give correct distribution 
in the case of isotropic scattering. This phenomena can be observed in differences 
between distributions presented in the upper row in Fig. 3.
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 Anisotropic scattering photon direction density is presented in the middle and 
lower rows of Fig. 3. Arrow connecting two distributions indicates the similar dis-
tributions obtained by both the methods of phase function sampling but with the 
use of different anisotropy coefficients. To obtain similar distributions of  scattering 
angles, the value ga = 0.9406 should be used in the case of numerical inversion of 
the original HG phase function instead of g = 0.8. 
 The differences between the respective functions presented in Fig. 2 can be mini-
mized if the g value used in the analytical expression ca (φ) is corrected. An example 
of such correction is given in Fig. 4A, where the distributions of the cosine of polar 

Fig. 3. Projections of photons directions after scattering event on a unit sphere. Results of simulations 
carried out using the original c(φ) phase function (left panel) and the analytical inversion ca (φ) (right panel). 
Incident direction is parallel to z axis and scattering occurs at the origin. Results of simulations obtained for
 isotropic scattering g = 0 (upper row), anisotropic scattering g = 0.8 (middle row) and g = 0.94 (lower row)
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deflection angle are shown for the different methods used. The solid line represents 
the cosine distribution for g = 0.607 calculated by numerical inversion of cumulative 
distribution of the original HG phase function c (φ), the dashed line corresponds to 
analytical inversion ca (φ) calculated for the same anisotropy coefficient g = 0.607, 
the dotted line is the distribution of the cosine obtained by analytical inversion ca (φ) 
for ga = 0.783. The ga value is that for which a minimum of the root mean square 
error of the difference between the cosine from analytical ca (φ) and numerical c (φ) 
inversion of cumulative distribution of original HG phase function is obtained. In 
Fig. 4B the difference between the original g value and the corrected ga value is 
presented as a function of g. It can be observed that for low and high g values the 
difference between original and corrected g is small. 
 The function presented in Fig. 4B can be well approximated by the log-normal 
function of the following form: 

Fig. 4. A: Cosine distributions obtained using different methods of calculation. Numerical calculation 
based on c (φ) (eqns. 5, 8) for g = 0.607 – solid line; analytical inversion ca (φ) (eq. 7) for g = 0.607 
– dotted line, fitted analitycal ca (φ) (eq. 7) to sampled numerical inversion for g = ga = 0.783 – dashed 
line; B : differences between the anisotropy coefficient g and the corrected anisotropy coefficient ga in 
the analytical inversion ca (φ) (eq. 7) where ga is the value of the anisotropy coefficient at the smallest

root mean square error smaller than in the case of the numerical inversion c (φ) (eqns. 5, 8)
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with parameters: a = –1.895, b = 2.072, c = 0.607, d = 3.416, e = 0.294. This func-
tion gives maximum error of the corrected anisotropy coefficient g not greater than 
0.00167. 
 The root mean square error between the cosine calculated by analytical expres-
sion ca (φ) and the cosine calculated by numerical calculation of c (φ) is defined as: 
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where N is a number of samples. This error versus anisotropy coefficient is shown 
in Fig. 5 as a dotted line. The root mean square error for ga after correction of the 
anisotropy coefficient is much smaller. (see Fig. 5 – solid line).
 We tested influence of the method of the phase function calculation on the results 
of simulations carried out for a homogeneous medium with optical properties similar 
to those of living tissues (reduced scattering coefficient: µs = 2cm–1 and absorption 
coefficient µa = 0.1cm–1, anisotropy coefficient g = 0.8, refractive index n = 1.4 
[9, 28]). 
 The Monte Carlo simulations were performed for different source-detector 
separations. On this basis, the spatial distributions of the visiting probabilities were 
obtained. The 2-dimensional projections of the visiting probability distributions are 
shown in Fig. 6. Distributions of the visiting probability presented in column A were 
obtained using the original MCML code, i.e. by the analytical inversion ca (φ). The 
distributions shown in column B in Fig. 6 were obtained by the numerical inversion 
of cumulative distribution of the original HG phase function c (φ). For the distribu-

Fig. 5. Root mean square error as a function of the anisotropy coefficient g in the case of the analytical 
inversion of the cosine of polar deflection angle ca (φ) (eq. 7) and of the numerical inversion c (φ) (eqns. 
5, 8) for the same anisotropy coefficient – dotted line; for the corrected anisotropy coefficient ga – solid line
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Fig. 6. Photon package visiting probability: first row panels: 50µm, second row panels: 250µm, 
third row panels: 495µm, fourth row panels: 10mm. A. optical properties: µs = 2cm–1, µa = 0.1cm–1, 
g = 0.8, distributions obtained using the analytical inversion ca (φ); B. optical properties: µs = 10cm–1, 
µa = 0.1cm–1, g = 0.8 distributions obtained using the numerical inversion c (φ); C. optical properties: 
µs = 10cm–1, µa = 0.1cm–1distributions obtained using the analytical inversion ca (φ) with the corrected

 anisotropy factor ga = 0.9406
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tions presented in column C, the calculations were performed using the analytical 
inversion ca (φ) and the original MCML code with corrected anisotropy coefficient 
ga. Rows in Fig. 6 represent different source detector separations (row 1 – 50µm, 
2 – 250µm, 3 – 450µm, 4 – 10mm). The detection ring was 0.5mm thick in the last 
case. The scattering coefficient was µs = 10mm–1 and the anisotropy coefficient was 
0.8. The corrected anisotropy coefficient in the case C (Fig. 6), calculated according 
to the formula (eq. 9), was g = 0.9406. 
 More quantitative comparison of the properties of visiting probability distribu-
tions obtained by the different methods of the phase function calculation is presented 
in Figs. 7 and 8. In Fig.7, the reflectance versus the source-detector distance is pre-
sented. The solution of diffusion equation [13] was compared with the results of the 
Monte Carlo simulations performed by  the analytical inversion of the phase function 
ca (φ) as well as with the results of simulations obtained by the numerical inversion of 
cumulative distribution of the original HG phase function c (φ) for isotropic scatter-
ing (g = 0). It can be observed that the results of the Monte Carlo simulations do not 
agree with the solution of diffusion equation for the short source-detector distances. 
Furthermore, for very short source-detector distances, the difference can be observed 
between the results of the Montre Carlo simulations carried out for different methods 
of the phase function calculations. 
 In Fig. 8, feasibility of the proposed correction algorithm is presented. Here 
the results obtained for anisotropic scattering (g = 0.8) calculated with the use of 
analytical expression ca (φ) were compared with those obtained by the numerical 
inversion of cumulative distribution of the original HG phase function c (φ). The 
difference between the reflectance obtained for these methods of phase function 
calculation is large. We calculated also the reflectance using the analytical inversion 
ca (φ) with corrected anisotropy coefficient ga = 0.9406. In this case, the reflect-
ance agrees well with the data obtained for the numerical inversion of cumulative 

Fig. 7. Reflectance as a function of source-detector separation for semi infinite homogeneous medium with 
optical properties: µs = 20cm–1, µa = 0.1cm–1, g = 0, obtained using the analytical inversion ca (φ) – dashed
 line; the numerical inversion c (φ) – bold solid line, and solution of diffusion equation – thin solid line 
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distribution of the original HG phase function c (φ) with g = 0.8. This result is 
consistent with the discussed above differences between the visiting probability 
distributions.

Fig. 8. Reflectance as a function of source-detector distance for semi infinite homogeneous medium 
with optical properties:µs = 10cm–1, µa = 0.1cm–1, obtained using the analytical inversion ca (φ) (g = 0.8) 
– �; the numerical inversion c (φ) (g = 0.8) – �, and the analytical inversion for corrected anisotropy

factor ca (φ) (g = 0.9406) – �

5. Discussion and Conclusions

The differences between the distributions of the cosine of polar deflection angle 
(Fig. 2) lead to the differences in distributions of the visiting probability (Fig. 6 
columns A and B). For short source-detector separations considered here, the clas-
sical symmetric banana shape of the visiting probability distributions is distorted, 
and there is no symmetry along the perpendicular bisector of the source-detector 
segment. The differences are visible in the distributions of the visiting probabilities 
obtained by the numerical inversion of cumulative distribution of the original HG 
phase function c (φ) and the analytical expression ca (φ). For the numerical inversion 
of cumulative distribution of the original HG phase function the probability that the 
photons penetrate near the surface between the location of the source and the detec-
tor is low. On the contrary, when the analytical expression is used, the probability of 
penetration below the surface is much higher. 
 The influence of the differences between both the presented methods of compu-
tation is best visible in the Monte Carlo simulations carried out for a small source-
detector separation, where anisotropy cannot be neglected [29]. These differences 
tend to disappear when the interoptode distance increases (Fig. 6 bottom panel). 
 For larger source-detector separations, where photons are diffusively scattered 
(Fig. 6–4-th row), the visiting probability distributions become symmetrical and form 
the classical “banana” shape. At large source-detector separations, the consideration 
of the non-isotropic scattering can be reduced by introduction of a combined meas-
ure of the scattering properties of the corresponding isotropic medium, i.e. by the 
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analysis of reduced scattering coefficient (µs = (1 – g)µs). However, the numerical 
calculation of the polar deflection angle, using the original HG function, can also 
cause errors in simulations of the large source detection separations with anisotropy 
of scattering. In this case, the reduced scattering coefficient of the simulated medium 
becomes erroneous. This effect is visible in Fig. 8.
 Tests of speed of the algorithms based on the analytical expression and the numeri-
cal inversion of cumulative distribution of the original HG phase function  revealed 
that time of simulations for the numerical inversion with g = 0.8 is approximately two 
times longer than this obtained for the analytical expression with the same anisotropy 
factor. This effect is caused by the difference in effective g used in both the simula-
tions, i.e. by the  difference in reduced scattering coefficient. Comparison of the time 
needed for simulations in the case of analytical expression with corrected anisotropy 
factor g = 0.9406 and of numerical inversion with g = 0.8 shows that speed of the 
both algorithms is similar. A small difference (about 5%) observed can be caused by 
faster reading of the cosine of polar deflection angle from look-up table. The same 
speed for the both algorithms can be also observed for isotropic scattering (g = 0).
 The error caused by the numerical calculation c (φ) performed on the basis of 
the original HG function can be minimized by correcting the anisotropy coefficient 
using equation (9). Results of such a correction are shown in Fig. 3, in column C in 
Fig. 6 and in Fig. 8. The differences between the distributions shown in columns B 
and C in Fig. 6 are difficult to distinguish – only a smaller number of photons was 
detected in the case C; it is due to the high anisotropy coefficient (g = 0.9406). That 
means that the distributions are more noisy. 
 The presented recalculation method of the anisotropy coefficient can be easily 
used to estimate the mean cosine of the scattering angle when the numerical inversion 
of cumulative distribution of the original HG phase function is applied. It also allows 
to compare results obtained with application of different methods of calculation of 
the polar deflection angle. 
 The data obtained show the influence of the phase function sampling algorithm 
on the results of the Monte Carlo simulations. The presented approach can be useful 
in development of the Monte Carlo codes for analysis of the light distributions at short 
source-detector separations. It may also lead to optimization of optical probe arrange-
ments in the case of applications with small source-detector distances [30–33], e.g. the 
laser-Doppler blood perfusion measurements or the  endoscopic optical measurements.
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