
Biocybernetics and Biomedical Engineering
2008, Volume 28, Number 4, pp. 3–19

 * Correspondence to: Robert Nowak, Warsaw University of Technology, ul. Nowowiejska 15/19,
00-665 Warsaw, Poland, e-mail: r.m.nowak@elka.pw.edu.pl
Received 19 February 2008; Accepted 10 June 2008

Finite State Automata Built on DNA

ROBERT NOWAK1,*, ANDRZEJ PLUCIENNICZAK2

1 Warsaw University of Technology, Warsaw, Poland
2 Institute of Biotechnology and Antibiotics, Warsaw, Poland

This paper describes a non-deterministic finite-state automaton based on DNA strands.
The automaton uses massive parallel processing offered by molecular approach for com-
putation and exhibits a number of advantages over traditional electronic implementations.
This device is used to analyze DNA molecules, whether they are described by specified
regular expression. Presented ideas are confirmed by experiment performed in a genetic
engineering laboratory.

K e y w o r d s: DNA computing, automata, regular expressions, molecular computing

1. Introduction

The paper concerns moleclar computations i.e. new discipline, which uses molecules
to performing calculations [1, 2]. The described method uses DNA (deoxyribonu-
cleic acid) molecules for building finite state automata. The double helix of DNA is
formed from two separate DNA strands, connected together (head-to-toe) by hydrogen
bonds. The DNA strands may be viewed as a chain of nucleotides. There are four
nucleotides: adenine, cytosine, guanine, and thymine, abbreviated to A, C, G, and T
respectively. Each strand has a natural orientation, denoted (according to chemical
convention) as 5’ and 3’ end. The hydrogen bond is selective, A bonds with T, and G
bonds with C, the pairs (A,T) and (G,C) are complementary. The DNA strands are
complementary if they are built from complementary nucleotides. More information
about DNA and basic operations (i.e. hybridization, denaturation, ligation, cutting,
PCR) from computer scientists point of view can be found in [3–5].
 An alphabet is a finite nonempty set of symbols. Symbol over some alphabet
Σ, denoted in this paper by a small letter or digit, is represented by a sequence

4 R. Nowak, A. Plucienniczak

of consecutive nucleotides of length n, x– denotes the sequence complementary to
the sequence representing symbol x, e.g. if x is represented by ATCCCA (sequences
are written from 5’ to 3’ end), the complementary sequence is 3’-TAGGGT-5’,
thus x– is TGGGAT. A string over given alphabet is any finite sequence of symbols
(e.g. ε, a, b, aa, ab, aab, are the strings over Σ = {a,b }, ε represents empty string).
The length of a string R (the number of symbol occurrences in R) is denoted by |R|,
e.g. |aab| = 3, |ε| = 0. The strings are represented by DNA strands, and denoted in this
paper by capital letter. For example, consider the alphabet Σ = {a,b}, where symbols
are represented by ATCCCA, GGTCCT respectively. The DNA strand for R = abb has
sequence ATCCCAGGTCCTGGTCCT.
 A set of strings over given alphabet is called a formal language. A formal
grammar is a precise description of a formal language. The regular languages are
the simplest class in the Chomsky hierarchy of formal grammars. The right-linear
grammar is quadruple G = (N,T,P,q0), where N is a nonterminal alphabet, T is a
terminal alphabet T ⊆ Σ, q0 is the starting symbol (axiom) q0 ∈ N, and P is the set
of production rules. Production rules conform the pattern 1→ a2 or 1→a, where
1 ∈ N, 2 ∈ N, and a ∈ T. In this work numbers denote nonterminal symbols, letters
denote terminal symbols. In practise the regular expressions are commonly used
to describe regular language. For any regular expression an equivalent right-linear
grammar can be constructed. More information about languages and grammars can
be found in [6].
 Decision whether a given string belongs to a given regular language is undertaken
by a finite state automaton. The finite state automaton can be constructed [6] for any
regular language. If the length of regular expression describing given regular language
is |R|, then simple algorithm (of linear time complexity for electronic computer) can
construct a non-deterministic finite state automaton. The number of states (memory
complexity) is O(|R|), and time complexity to analyze string X is O(|R|*|X|). The de-
terministic finite state automaton has the number of states exponentially dependent
on length of regular expression, so memory complexity is O(2|R|), and the analysis
for string X takes O(|X|) steps. A sample finite state automaton is depicted in Fig. 1.

Fig. 1. Finite state automaton and the production rules for the language a(a|b)*b

5Finite State Automata Build on DNA

The automaton recognizes strings belonging to the language a(a|b)*b. The grammar
G = (N,T,P,q0), where N = {0,1}, T = {a,b}, q0 = 0, and P showed in Fig. 1 generates
strings belonging to the language.
 The idea described in this paper is to build a non-deterministic finite state automa-
ton in vitro. Such a device uses massive parallelism given by molecular approach,
and has size complexity (understood as a number of different molecules) O(|R|),
where R is regular expression describing given language. The analysis for string X
has O(|X|) time complexity.

2. Molecular Production

The molecular production is a biological system which conditionally creates designed
DNA strand. It is the basic element in a molecular automaton used to implement
transition.
 The molecular production, denoted A → B, creates string XB if and only if the
input is XA (A, B, X are sub-strings, |A| > 0). Such system checks if the sequence
of nucleotides representing condition (here A) is presented at the 3’ end of the input
string, and then creates the output string: the DNA strand is copied from the input,
but the condition sequence is replaced by the sequence representing the result
of production (here B). Therefore, for the input XA, the XB is obtained (Fig. 2). It
should be mentioned, that XA is also presented in the output, because the input and
the output are not separated.
 If the strand representing the input string has not the condition sequence at the
3’ end, the molecular production creates nothing. For example production A → B for
input XC, where C = A, provides only XC (Fig. 2).

Fig. 2. Molecular production A→B; X, A, B, C are strings, and |A|>0, A=C

Molecular
productionInput string Output string

A->BXA XB,
XA

A->BXC XC

6 R. Nowak, A. Plucienniczak

3. Molecular Finite State Automaton

3.1. Reductions for Right-linear Grammars

Theorem:
If string S belongs to a language generated by the right-linear grammar G = (N,T,P,q0),
then it can be reduced to the string q0 (axiom). The following reduction rules are
used for the last symbols in a string:
� a → 0 when 0 → a ∈ P,
� a1 → 0 when 0 → a1 ∈ P.

Lemma:
When string is generated from the axiom (q0) by the right-linear grammar it has at
most one non-terminal symbol. This is the last symbol of the string.

Proof of lemma (mathematical induction):
Assume, that Sn = w1w2...wn An, where wi ∈ T, An ∈ N. Sn+1 should be obtained from
Sn by production An→wn+1An+1 (it retain the condition) or by production An → wn+1
(also retains it).
 Generated strings are: q0→w1A1→w1w2A2→...→w1w2...wn−1An−1 → w1w2...wn,
where wi ∈ T, Ai ∈ N.

Proof of theorem:
String Sn = w1w2...wn can be generated by right-linear grammar G = (N,T,P,q0), only
from string Sn−1 = w1w2...wn−1An−1, where An−1 →wn ∈ P. Therefore strings Sn−1 can be
constructed from Sn by reductions wn → An−1. If P does not contain production rule
An−1 → wn, then string w1w2...wn does not belong to language generated by G.
 String Sn=w1w2...wn An can be created only from strings w1w2...wn−1An−1, where
An−1 →wn An ∈ P. If production rule An−1 → wn An ∈ P, then string Sn = w1w2...wn An
does not belong to language generated by G. Strings Sn−1 are constructed from Sn by
reductions wn An → An−1. Because |Sn−1| = |Sn|−1, after n−1 steps, the set of strings of
length equal 1 is obtained. If the axiom (q0) is in this set, the string w1w2...wn An can
be generated by G.

3.2. Molecular Automaton Based on Reductions

For a given language the corresponding right-linear grammar is constructed. To
analyze the input string the reductions (described in the theorem) are performed.
If the axiom (starting symbol) is obtained the input string belongs to the grammar
(is accepted).
 Such an idea is the core of the molecular automation. This device takes advan-
tage of molecular production to implement reductions. The algorithm is shown in
Fig. 3.

7Finite State Automata Build on DNA

 Firstly, the automaton is prepared and DNA strand representing the input string
is added to a vessel.
 Then k steps (where k = |S|) of productions and separations are performed. After
each production the last symbols from the string could be reduced. The separation
removes the input string (present in the output of the molecular production), i.e. for
input XA and molecular production A → B only XB is kept. It should be noted that
each molecular production could work independently of each other, so in a single
step many different reductions should be performed.
 Finally the axiom is detected. If such string is obtained, the answer is true, the
input string is accepted by automaton. Otherwise, the answer is false.

3.3. Example

Consider the regular language a(a|b)*b and the right-linear grammar shown in Fig. 1.
The reductions (molecular productions) for this language are: b → 1, b1 → 1, a1 → 1
and a1 → 0.
 The molecular automaton performs 3 steps when the input string abb is analyzed:
abb → ab1 → a1 → {0,1}. The axiom (symbol 0) is present, thus abb belongs to the
given language.
 For bbb and the same automaton the reductions are: bbb → bb1 → b1 → 1.
The axiom is not present, so bbb is rejected.

Fig. 3. Molecular automaton – algorithm

8 R. Nowak, A. Plucienniczak

4. Molecular Production – Realization

The molecular production is the basic element used to build the automaton considered
in this paper. Below the details of this process are presented.

Fig. 4. Molecular production A → B. The production engine has sequence ĀB

 The process of the molecular production (illustrated in Fig. 4) needs the DNA
strand called a production engine. This strand contains two parts: the first is com-
plementary to the conditional part of the molecular production (i.e. Ā for A → B),
the second has nucleotides representing the result of production (i.e. B for A → B).
 Firstly, the production engine partially hybridizes to the input string (only if
it has the proper sequence on 3’ end). Next, the special polymerization with DNA
polymerase “jump” is performed. A strand built by polymerase has the sequence
complementary to the output string. Finally, the polymerization is performed, so
the output string is produced. It should be noted that if the hybridization does not
occur (the production engine and the input string are not partially complementary),
polymerase does produce only a strand complementary to the production engine,
which can be easily removed.
 The probability of DNA polymerase “jump” is very small, so in experiments the
PCR is applied. PCR (and dilution) can also remove the strands representing input
strings (separation in Fig. 3).

9Finite State Automata Build on DNA

5. Molecular Automaton Example

The molecular automaton (described in section 3) is represented in vessel by a set of
production engines. For the language a(a|b)*b these molecules are depicted in Fig. 5.
For the considered language there are 4 productions, the sequences correspond to
reductions: a1 → 0, a1 → 1, b1 → 1 and b → 1 respectively.

Fig. 5. The molecular automaton (molecular engines) for the language a(a|b)*b

The DNA strand representing a model string aab is shown in Fig. 6. As denoted
previously there are sequences representing symbols, and some temporary ones,
denoted start, end, used as primers.

Fig. 6. DNA strand representing a model word abb

At the beginning of calculations the molecules implementing the automaton (produc-
tion engines) and input string are put into the vessel. Next the molecular productions
are performed (firstly the hybridization, next polymerization with “jump”, then dena-
turation and finally polymerization, like in section 4). Because of the length of string
aab, three steps of the molecular production and separation are performed.
 The first step is schematically depicted in Fig. 7. The production engine repre-
senting reduction b → 1 bonds to the strand working as the input string (the reduction
b → 1 is called to be active). The other engines are not bonded, so after the molecular
production and separation in the vessel the molecule corresponding to aa1 string
were presented.
 In the second step, depicted in Fig. 8, the reduction a1 → 1 is active, and the
string a1 is obtained.
 The third step (Fig. 9) shows parallelism of the described approach. The two
reductions are active: a1 → 0 and a1 → 1. So two different molecules were created:
molecules representing string 0 and 1 respectively.

10 R. Nowak, A. Plucienniczak

Fi
g.

 8
. E

xa
m

in
e

st
rin

g
aa

b
(f

or
 th

e
la

ng
ua

ge
 a

(a
|b

)*
b)

. S
te

p
2

Fi
g.

 7
. E

xa
m

in
e

st
rin

g
aa

b
(f

or
 th

e
la

ng
ua

ge
 a

(a
|b

)*
b)

. S
te

p
1.

11Finite State Automata Build on DNA

Finally, the detection is performed. It is done by checking if the molecule represent-
ing the axiom (string 0 here) is presented in the vessel. Because such DNA strand
is produced in the third step, then answer is true. The string aab is accepted by
the molecular automaton.

6. Experimental Verification

The experiments realized in a genetic engineering laboratory confirmed the presented
ideas. The process of the molecular production was performed and the possibility of
building of the molecular automata using many of them was verified. The automata
built in the laboratory were very simple, as depicted in Fig. 10.

Fig. 9. Examine string aab (for the language a(a|b)*b). Step 3

Fig. 10. The finite automata build in the laboratory

12 R. Nowak, A. Plucienniczak

6.1. Verification of Molecular Production

The experiment was performed as described in section 4, details supplied below.
The single stranded DNA molecule from M13 fag, described as m13, (genBank:
www.ncbi.nlm.nih.gov; No X02513, produced by Amersham) was applied as the
input string. The production engine called m13HAK was synthetic molecule having
sequence provided in Table 1.

Table 1. Sequence of DNA molecules used in the experiment

Name Length Sequence
m13 7249 M13mp18 – GenBank
m13PKO 21 CTA GCA CTA CAA CTC GGA CTA

m13HAK 55 GAG GTC ATT TTT GCG GAT GGC TTA GAG CTT CCG –

 GTA GTC CGA GTT GTA GTG CTA G

m13P 22 CTA TTA GTA GAA TTG ATG CCA C

 The hybridization was performed on the mixture showed in Table 2, which was
heated to 95°C (denaturation all molecules) and kept in 72°C for 1 minute. As a re-
sult, the structure illustrated in Fig. 11 was created. The molecule m13HAK sticked
to m13 (sequences partly complement) and m13PKO (used as primer) hybridized to
m13HAK.

Table 2. Mixture used for hybridization in verification of the molecular production

Name Concentration Amount
m13 0.44 pM/µl 5 µl
m13HAK 5.0 pM/µl 1 µl
m13PKO 5.0 pM/µl 1 µl
Buffer 10× 4 µl
H2O 23 µl
TOTAL 34 µl

Fig. 11. DNA strands created after hybridization

13Finite State Automata Build on DNA

Next the polymerization with DNA polymerase “jump” was performed. To mixture
kept in 50°C the 5 µl of dNTP (20 µM/µl, Amersham) and 1 µl Taq DNA polymerase
(2u/µl, produced by Institute of Biotechnology and Antibiotics from Thermophilus
Aquatius) was added.
 After 20 minutes the mixture was treated with phenol and chloroform-isoamyl
alcohol mixture, amplified by PCR with primers m13P and m13PKO (26 and 29
cycles: 94°C 15sec, 50°C 15sec, 72°C 30sec). 10 µl of the PCR products were electro-
phoresed on 6% polyacrylamide gels (acrylamide: bisacrylamide = 59:1) with TAE
buffer, stained in ethidium bromide at 0.5 µg/L aqueous solution for 10 min. Image
of the gel (Fig. 12) was made using a White/Ultraviolet Transiluminator.

Fig. 12. Gel image after the DNA polymerase “jump” reaction: strip 1,2 and 8: products of PCR (DNA
before cutting); strip 3,5 and 9: pattern (1444, 736, 587, 476, 458, 434, 298, 267, 257, 174, 102, 80, 30);

strip 4: Hinf I; strip 6: HpaII; strip 7: RsaI

 The molecule had proper length, however additional verification was performed.
The products of PCR were cut by restrictazes RsaI, Hinf I, HpaII (Amersham). Strips
4, 6 and 7 in Fig. 12 proved that the molecules had proper sequences.
 The estimated probability of DNA polymerase “jump” is about 3*10−8. This
value was obtained comparing the brightness of the strips.

6.2. Verification of Simple Molecular Automaton

The two state automaton, depicted in Fig. 10 containing two molecular productions:
a → b and b → c was practically tested in the laboratory. In the experiment the input
string xa was transformed into xb and then into xc. The simplified schema of this
experiment is shown in Fig. 13. The idea was described in section 3 and section 5,
details supplied below.
 The sequences of DNA molecules used in this experiments are showed in Table 3.
The molecule called m13 represented the input string (xa), the aut represented the

14 R. Nowak, A. Plucienniczak

string xb, the production engine a→b was m13HAK2, the m13HAK3 was the produc-
tion engine b→c, the molecule m13Z was a support for molecular production and
others (m13PKP, m13P, m13PKP2) were used as primers.

Fig. 13. Experiment for the finite state automaton. a) the molecular production a → b construct the xb
 string where xa is the input one, b) the second production b → c makes xc from xb

Firstly the molecules m13Z were kinazed (T4 kinaze) at 37°C for 1hour, than the
enzyme was thermally deactivated. Secondly the molecular production a → b was
performed, next the production b → c was done, finally the molecule representing
output string was checked. This process was described in section 3 from computer
science point of view.

Table 3. Sequence of DNA molecules used in the experiment

Name Length Sequence
m13 7249 M13mp18 – GenBank
m13HAK2 60 ATC TGG TGC TGT AGC TCA ACA TGT TCC GGA –

 GCA CCA GAT ATC TTC GAG TTG TAG TGC TAG

m13Z 25 TGC TCC GGT TAA ATA TGC AAC TAA A

m13PKP 21 CTA CGA CTA CAA CTC GGA GAT

m13P 22 CTA TTA GTA GAA TTG ATG CCA C

aut 218 the string created by molecular production a→b
m13HAK3 56 CGA AGA TAT CTG GTG CTC CGG CCG GAG CAC –

GAG AAT TCC ATA GGA CCT TGC GCT CC

m13PKP2 21 GGA GCG CAA GGT CCT ATG GAA

15Finite State Automata Build on DNA

 The molecular production a → b was performed in a different way than described
in section 4. The respective steps were:
 1. Hybridization: the mixture showed in Fig. 14 was heated to 95°C for 1 minute
(denaturation of all molecules) and kept at 72°C for 1 minute. The structure illustrated
in Fig. 14 was created. The molecule m13Z sticked to both DNA strands, eliminating
the DNA polymerase “jump” and caused that molecular production was much more
efficient.
 2. The polymerization: to the vessel containing the products of hybridization
0.5 µl Klenov polimeraze (5 u/µl) were added, and the polymerization was performed
at 20°C for 2 minutes. There were two starters: m13PKP and m13Z (Table 4, Fig. 14).
The enzyme was thermally deactivated (the mixture was heated to 65°C).
 3. The ligation: 10 µl of mixture after polymerization, 1 µl ligase enzyme (Am-
ersham) and ligase buffer were kept at 16°C for 24hours.
 4. PCR: the products of ligation were amplified by PCR with primers m13P and
m13PKP (cycles: 94°C 15sec, 50°C 15sec, 72°C 30sec).
 5. Check: 10 µl of the PCR products were electrophoresed on 6% polyacrylamide
gels (acrylamide: bisacrylamide = 59:1) with TAE buffer and stained in ethidium
bromide at 0.5 µg/L aqueous solution for 10 min. Image of the gel (Fig. 15) made
by using a White/Ultraviolet Transiluminator proved the proper length of the aut
molecule.
 6. Check: 10 µl of the PCR products were treated with phenol and chloroform-
isoamyl alcohol mixture, and were cut by restrictazes EcoRV, HinfI and MspI (Am-
ersham) to provide that molecules have proper sequences. The gel image is shown
in Fig. 16.
 It should be mentioned, that PCR(step 4) performed the separation (Fig. 3). This

Table 4. Mixture for verification of the molecular production a → b

Name Concentration Amount
m13 0.1 pM/µl 2.0 µl
m13HAK2 6 pM/µl 1.0 µl
m13Z 5 pM/µl 1.5 µl
m13PKP 8 pM/µl 1.0 µl
dNTP 20 µM/µl 2.0 µl
Buffer 10× 2.0 µl
H2O 10.0 µl
TOTAL 19.5 µl

process produced the aut molecule of length 218bp and concentration 0.5 pM/µl
(10 ng/µl).
 The molecular production b → c is performed similarly. The PCR products of the

16 R. Nowak, A. Plucienniczak

Fig. 15. Molecules after a→b molecular production: strip 1 and 7: PCR after 23 cycles, strip 2, 5, 6
and 9: pattern (1444, 736, 587, 476, 458, 434, 298, 267, 257, 174, 102, 80, 30); strip 3: PCR 19 cycles;

strip 4: PCR 15 cycles; strip 8: PCR 24 cycles

Fig. 14. DNA molecules used to verification of the molecular production a → b

Fig. 16. Gel image after cutting aut molecule; strip 1: MspI, strip 2: Hinf I, strip 3: EcoRV, strip 4:
pattern (1444, 736, 587, 476, 458, 434, 298, 267, 257, 174, 102, 80, 30), strip 5: DNA before cutting

production a → b, containing the aut molecule were used in: hybridization, polimeri-
sation, ligation and amplification and then the molecule representing xc string was
obtained, details supplied below.
 The hybridization mixture (Table 5) was heated to 95°C and kept at 72°C.

17Finite State Automata Build on DNA

The structure showed in Fig. 17 was created. Next polimerisation and ligation was
performed. Finally, the molecules were amplified by PCR with primers m13P and
m13PKP2, electrophoresed and photographed (Fig. 18). The products of PCR were
cut by restriction enzymes to prove having proper sequences.
The experiment manifested, that many consecutive molecular can perform computa-

Fig. 17. Structure after hybridization when reaction to verify the molecular production b→c was performed

Table 5. Mixture for verification of the molecular production a → b

Name Concentration Amount
aut 0.5 pM/µl 4 µl
m13HAK3 10 pM/µl 2 µl
m13Z 5 pM/µl 3 µl
m13PKP2 10 pM/µl 2 µl
dNTP 20 µM/µl 2 µl
Buffer 10× 3 µl
H2O 13 µl
TOTAL 29 µl

Fig. 18. Gel image after the production b→c. strip 1: pattern (1444, 736, 501, 489, 476, 404, 331, 242,
190, 147, 111, 110); strip 2: PCR after 23 cycles; strip 3: PCR after 26 cycles; strip 4: PCR after 29 cycles

18 R. Nowak, A. Plucienniczak

tions, thus it was demonstrated that molecular automata described in this work can
be practically build and used.

7. Conclusion

The short comparison between complexity of different finite state automata is pre-
sented in Table 6. The molecular approach has advantages over electronic imple-
mentations, because each possible transitions from a given state are simultaneously
considered (take advantage of massive parallel processing).
 There are a few others works describing realization of automata by using

the molecular approach. In [2] only propositions are given, in [7] the human assist-
ance is needed. The described method employs a single vessel to code many states
(because it implements a non-deterministic automaton), and the person reads the
current symbol from the input string, and decides to which vessel the molecules
should be added (simulating transition). It complicates the experiments and makes
the process slower, more expensive and much prone to errors. The interesting idea
shown in [8], which uses FokI enzyme, was experimentally proved. The main
disadvantage of this method is small maximum number of states and transitions
(256).
 The presented non-deterministic finite state automaton can be treated as an alter-
native way of performing molecular computation. It is the step toward constructing
a molecular computer.
 Practically, it might be used in biological and medical research, for searching
DNA sequences described by the regular expression. When a requested sequence
is simple (can be described by the regular expression), the described non-determin-
istic automaton perform this task quickly and inexpensively (when compared with
currently used DNA sequencing), so e.g. the diagnosis of a genetic disease can be
performed on a large scale.

References

Table 6. Complexity of finite state automata described by the regular expression r when the string S
 is analyzed. Size for the molecular automaton is the number of different molecules used for
 calculation

Automaton Size Time

Electronic nondeterministic O(|r|) O(|r|*|S|)

Electronic deterministic O(2|r|) O(|S|)

Molecular O(|r|) O(|S|)

19Finite State Automata Build on DNA

 1. Amos M.: Theoretical and experimental DNA computation. Springer, 2005.
 2. Păun G., Rozenberg G., Salomaa A.: DNA Computing: NewComputing Paradigms. Springer,

1998.
 3. Baxevanis A.D., Ouellette B.F.: Bioinformatics: A Practical Guide to the Analysis of Genes and

Proteins, John Wiley & Sons, Inc., 2001.
 4. Deonier R.C., Tavare S., Waterman M.S.: Computational Genome Analysis: An Introduction Springer,

2005.
 5. Lila K., Kitto R., Gloor G.: A computer scientist’s guide to molecular biology. Soft Computing, 2001,

5, 95–101.
 6. Hopcroft J., Ullman J.: Introduction to Automata Theory, Languages, and Computation. Addison

Wesley, 1979.
 7. Rose J., Gao Y., Garzon M., Murphy R.C., Deaton R., Franceschetti S.: Dna implementation of

finite-state machines. 2nd Anneal Genetic Programming Conference, Morgen Kaufmann, 1997,
160–165.

 8. Benenson Y., Paz-Elizur T., Adar R., Keinan E., Livneh Z., Shapiro E.: Programmable and autonomous
computing machine made of biomolecules. Nature, 2001, 414, 430–434.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

